org.chocosolver.solver.search.strategy.Search Maven / Gradle / Ivy
Show all versions of choco-solver Show documentation
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2024, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.solver.search.strategy;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.ResolutionPolicy;
import org.chocosolver.solver.Solution;
import org.chocosolver.solver.objective.ObjectiveStrategy;
import org.chocosolver.solver.objective.OptimizationPolicy;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperator;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperatorFactory;
import org.chocosolver.solver.search.strategy.decision.Decision;
import org.chocosolver.solver.search.strategy.decision.IbexDecision;
import org.chocosolver.solver.search.strategy.selectors.values.*;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphEdgeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphLexEdge;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphRandomEdge;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphLexNode;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphNodeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphRandomNode;
import org.chocosolver.solver.search.strategy.selectors.values.graph.priority.GraphNodeOrEdgeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.priority.GraphNodeThenEdges;
import org.chocosolver.solver.search.strategy.selectors.variables.*;
import org.chocosolver.solver.search.strategy.strategy.*;
import org.chocosolver.solver.variables.*;
public class Search {
// ************************************************************************************
// GENERIC PATTERNS
// ************************************************************************************
/**
* Use the last conflict heuristic as a pluggin to improve a former search heuristic Should be
* set after specifying a search strategy.
*
* @return last conflict strategy
*/
public static AbstractStrategy lastConflict(
AbstractStrategy formerSearch) {
return lastConflict(formerSearch, 1);
}
/**
* Search heuristic combined with a constraint performing strong consistency on the next
* decision variable and branching on the value with the best objective bound (for optimization)
* and branches on the lower bound for SAT problems.
*
* BEWARE: ONLY FOR INTEGERS (lets the former search work for other variable types)
*
* @param formerSearch default search to branch on variables (defines the variable selector and
* the value selector when this does not hold)
* @return best bound strategy
*/
public static AbstractStrategy bestBound(AbstractStrategy formerSearch) {
if (formerSearch == null) {
throw new UnsupportedOperationException(
"the search strategy in parameter cannot be null! Consider using Search.defaultSearch(model)");
}
return new BoundSearch(formerSearch);
}
/**
* Use the last conflict heuristic as a pluggin to improve a former search heuristic Should be
* set after specifying a search strategy.
*
* @param k the maximum number of conflicts to store
* @return last conflict strategy
*/
public static AbstractStrategy lastConflict(
AbstractStrategy formerSearch, int k) {
if (formerSearch == null) {
throw new UnsupportedOperationException(
"the search strategy in parameter cannot be null! Consider using Search.defaultSearch(model)");
}
return new LastConflict<>(formerSearch.getVariables()[0].getModel(), formerSearch, k);
}
/**
* Use the conflict ordering search as a pluggin to improve a former search heuristic Should be
* set after specifying a search strategy.
*
* @return last conflict strategy
*/
public static AbstractStrategy conflictOrderingSearch(
AbstractStrategy formerSearch) {
return new ConflictOrderingSearch<>(formerSearch.getVariables()[0].getModel(),
formerSearch);
}
/**
* Use the Generating Partial Assignment procedure as a plug-in to improve a former search heuristic
* for COPs.
*
* The aim of the approach is to find promising partial assignments that have a higher possibility of being optimal,
* or can be extended to a high-quality solution whose objective is close to that of an optimal one.
*
* This meta-heuristic is described in:
* "Finding Good Partial Assignments During Restart-based Branch and Bound Search, AAAI'23".
*
* @param ivars variables to generate partial assignment from
* @param maxSolNum maximum number of solutions to store
* @param largerCutoff whether to use larger cutoff when looking for solutions
* @param formerSearch former search heuristic
* @return good partial assignment strategy to plug in as first strategy
*/
public static AbstractStrategy> generatePartialAssignment(IntVar[] ivars,
int maxSolNum,
boolean largerCutoff,
AbstractStrategy> formerSearch) {
return new PartialAssignmentGenerator<>(ivars, maxSolNum, largerCutoff, formerSearch);
}
/**
* Make the input search strategy greedy, that is, decisions can be applied but not refuted.
*
* @param search a search heuristic building branching decisions
* @return a greedy form of search
*/
public static AbstractStrategy> greedySearch(AbstractStrategy> search) {
return new GreedyBranching(search);
}
/**
* Apply sequentialy enumeration strategies. Strategies are considered in input order. When
* strategy i returns null (all variables are instantiated) the i+1 ones is
* activated.
*
* @param searches ordered set of enumeration strategies
* @throws IllegalArgumentException when the array of strategies is either null or empty.
*/
public static AbstractStrategy sequencer(AbstractStrategy... searches) {
if (searches == null || searches.length == 0) {
throw new IllegalArgumentException("The array of strategies cannot be null or empty");
}
return new StrategiesSequencer(searches);
}
// ************************************************************************************
// SETVAR STRATEGIES
// ************************************************************************************
/**
* Generic strategy to branch on set variables
*
* @param varS variable selection strategy
* @param valS integer selection strategy
* @param enforceFirst branching order true = enforce first; false = remove first
* @param sets SetVar array to branch on
* @return a strategy to instantiate sets
* @throws IllegalArgumentException when the array of variables is either null or empty.
*/
public static SetStrategy setVarSearch(VariableSelector varS, SetValueSelector valS,
boolean enforceFirst, SetVar... sets) {
if (sets == null || sets.length == 0) {
throw new IllegalArgumentException("The array of variables cannot be null or empty");
}
return new SetStrategy(sets, varS, valS, enforceFirst);
}
/**
* strategy to branch on sets by choosing the first unfixed variable and forcing its first
* unfixed value
*
* @param sets variables to branch on
* @return a strategy to instantiate sets
*/
public static SetStrategy setVarSearch(SetVar... sets) {
return setVarSearch(new GeneralizedMinDomVarSelector<>(), new SetDomainMin(), true, sets);
}
/**
* Assignment strategy which selects a variable according to DomOverWDeg
and assign
* it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Boosting Systematic Search by Weighting Constraints."
* Boussemart et al. ECAI 2004.
* https://dblp.org/rec/conf/ecai/BoussemartHLS04
*/
public static AbstractStrategy domOverWDegSearch(SetVar... vars) {
return setVarSearch(new DomOverWDeg<>(vars, 0), new SetDomainMin(), true, vars);
}
/**
* Assignment strategy which selects a variable according to refined DomOverWDeg
and assign
* it to its lower bound, where the weight incrementer is "ca.cd".
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Refining Constraint Weighting." Wattez et al. ICTAI 2019.
* https://dblp.org/rec/conf/ictai/WattezLPT19
*/
public static AbstractStrategy domOverWDegRefSearch(SetVar... vars) {
return setVarSearch(new DomOverWDegRef<>(vars, 0), new SetDomainMin(), true, vars);
}
/**
* Assignment strategy which selects a variable according to Conflict History
* and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Conflict history based search for constraint satisfaction problem."
* Habet et al. SAC 2019.
* https://dblp.org/rec/conf/sac/HabetT19
*/
public static AbstractStrategy conflictHistorySearch(SetVar... vars) {
return setVarSearch(new ConflictHistorySearch<>(vars, 0), new SetDomainMin(), true, vars);
}
/**
* Assignment strategy which selects a variable according to Failure rate based
* variable ordering and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs."
* H. Li, M. Yin, and Z. Li, CP 2021.
* https://dblp.org/rec/conf/cp/LiYL21
*/
public static AbstractStrategy failureRateBasedSearch(SetVar... vars) {
return setVarSearch(new FailureBased<>(vars, 0, 2), new SetDomainMin(), true, vars);
}
/**
* Assignment strategy which selects a variable according to Failure length based
* variable ordering and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs."
* H. Li, M. Yin, and Z. Li, CP 2021.
* https://dblp.org/rec/conf/cp/LiYL21
*/
public static AbstractStrategy failureLengthBasedSearch(SetVar... vars) {
return setVarSearch(new FailureBased<>(vars, 0, 4), new SetDomainMin(), true, vars);
}
// ************************************************************************************
// GRAPHVAR STRATEGIES
// ************************************************************************************
/**
* Generic strategy to branch on graph variables
*
* @param varS Variable selection strategy
* @param nodeOrEdgeS Node or edge selection (defines if whenever a decision must be on nodes or edges)
* @param nodeS Node selector (defines which node to enforce/remove if decision is on nodes)
* @param edgeS Edge selector (defines which edge to enforce/remove if decision is on edges)
* @param enforceFirst branching order true = enforce first; false = remove first
* @param graphs GraphVar array to branch on
* @return a search strategy on GraphVar
*/
public static GraphStrategy graphVarSearch(VariableSelector varS, GraphNodeOrEdgeSelector nodeOrEdgeS,
GraphNodeSelector nodeS, GraphEdgeSelector edgeS, boolean enforceFirst,
GraphVar... graphs) {
if (graphs == null || graphs.length == 0) {
throw new IllegalArgumentException("The set of variables cannot be null or empty");
}
return new GraphStrategy(graphs, varS, nodeOrEdgeS, nodeS, edgeS, enforceFirst);
}
/**
* Default graph var search.
*
* Variable selection: input order.
* Node or edges selection: nodes first then edges.
* Node selection: lexicographic order.
* Edge selection lexicographic order.
* Enforce first.
*
*
node branching:
* Let i be the first node such that
* i in envelope(g) and i not in kernel(g).
* The decision adds i to the kernel of g.
* It is fails, then i is removed from the envelope of g.
*
* edge branching:
*
node branching:
* Let (i,j) be the first edge such that
* (i,j) in envelope(g) and (i,j) not in kernel(g).
* The decision adds (i,j) to the kernel of g.
* It is fails, then (i,j) is removed from the envelope of g
*
* @param graphs graph variables to branch on
*/
public static GraphStrategy graphVarSearch(GraphVar... graphs) {
return graphVarSearch(
new InputOrder<>(graphs[0].getModel()),
new GraphNodeThenEdges(),
new GraphLexNode(),
new GraphLexEdge(),
true,
graphs
);
}
/**
* Random graph var search.
*
* Variable selection: random.
* Node or edges selection: nodes first then edges.
* Node selection: random.
* Edge selection random.
* Enforce first.
*
* @param seed the seed for random selection
* @param graphs graph variables to branch on
* @return a randomized graph variables search strategy
*/
public static GraphStrategy randomGraphVarSearch(long seed, GraphVar... graphs) {
return graphVarSearch(
new Random<>(seed),
new GraphNodeThenEdges(),
new GraphRandomNode(seed),
new GraphRandomEdge(seed),
true,
graphs
);
}
// ************************************************************************************
// REALVAR STRATEGIES
// ************************************************************************************
/**
* Generic strategy to branch on real variables, based on domain splitting. A real decision is
* like:
*
* - left branch: X ≤ v
* - right branch: X ≥ v + e
*
* where 'e' is given by epsilon.
*
*
* @param varS variable selection strategy
* @param valS strategy to select where to split domains
* @param epsilon gap for refutation
* @param rvars RealVar array to branch on
* @param leftFirst select left range first
* @return a strategy to instantiate reals
* @throws IllegalArgumentException when the array of variables is either null or empty.
*/
public static RealStrategy realVarSearch(VariableSelector varS, RealValueSelector valS,
double epsilon, boolean leftFirst, RealVar... rvars) {
if (rvars == null || rvars.length == 0) {
throw new IllegalArgumentException("The array of variables cannot be null or empty");
}
return new RealStrategy(rvars, varS, valS, epsilon, leftFirst);
}
/**
* strategy to branch on real variables by choosing sequentially the next variable domain to
* split in two, wrt the middle value. A real decision is like:
*
* - left branch: X ≤ v
* - right branch: X ≥ v + e
*
* where 'e' is given by epsilon.
*
*
* @param epsilon gap for refutation
* @param reals variables to branch on
* @return a strategy to instantiate real variables
*/
public static RealStrategy realVarSearch(double epsilon, RealVar... reals) {
return realVarSearch(new Cyclic<>(), new RealDomainMiddle(), epsilon, true, reals);
}
/**
* Generic strategy to branch on real variables, based on domain splitting.
*
* A real decision is like:
*
* - left branch: X ≤ v
* - right branch: X ≥ v + epsilon
*
* where epsilon is given or equal to the smallest precision among rvars divide by 10.
*
*
* @param varS variable selection strategy
* @param valS strategy to select where to split domains
* @param leftFirst select left range first
* @param rvars RealVar array to branch on
* @return a strategy to instantiate reals
*/
public static RealStrategy realVarSearch(VariableSelector varS, RealValueSelector valS,
boolean leftFirst, RealVar... rvars) {
return realVarSearch(varS, valS, Double.NaN, leftFirst, rvars);
}
/**
* strategy to branch on real variables by choosing sequentially the next variable domain to
* split in two, wrt the middle value.
*
* A real decision is like:
*
* - left branch: X ≤ v
* - right branch: X ≥ v + {@link Double#MIN_VALUE}
*
*
*
* @param reals variables to branch on
* @return a strategy to instantiate real variables
*/
public static RealStrategy realVarSearch(RealVar... reals) {
return realVarSearch(new Cyclic<>(), new RealDomainMiddle(), true, reals);
}
// ************************************************************************************
// INTVAR STRATEGIES
// ************************************************************************************
/**
* Builds your own search strategy based on binary decisions.
*
* @param varSelector defines how to select a variable to branch on.
* @param valSelector defines how to select a value in the domain of the selected variable
* @param decisionOperator defines how to modify the domain of the selected variable with the
* selected value
* @param vars variables to branch on
* @return a custom search strategy
* @throws IllegalArgumentException when the array of variables is either null or empty.
*/
public static IntStrategy intVarSearch(VariableSelector varSelector,
IntValueSelector valSelector,
DecisionOperator decisionOperator,
IntVar... vars) {
if (vars == null || vars.length == 0) {
throw new IllegalArgumentException("The array of variables cannot be null or empty");
}
return new IntStrategy(vars, varSelector, valSelector, decisionOperator);
}
/**
* Builds your own assignment strategy based on binary decisions. Selects a variable X
* and a value V to make the decision X = V. Note that value assignments are the public static
* decision operators. Therefore, they are not mentioned in the search heuristic name.
*
* @param varSelector defines how to select a variable to branch on.
* @param valSelector defines how to select a value in the domain of the selected variable
* @param vars variables to branch on
* @return a custom search strategy
*/
public static IntStrategy intVarSearch(VariableSelector varSelector,
IntValueSelector valSelector,
IntVar... vars) {
return intVarSearch(varSelector, valSelector, DecisionOperatorFactory.makeIntEq(), vars);
}
/**
* Builds a default search heuristics of integer variables Variable selection relies on {@link
* #domOverWDegSearch(IntVar...)} Value selection relies on InDomainBest for optimization and
* InDomainMin for satisfaction
*
* @param vars variables to branch on
* @return a default search strategy
*/
public static AbstractStrategy intVarSearch(IntVar... vars) {
Model model = vars[0].getModel();
IntValueSelector valueSelector;
if (model.getResolutionPolicy() == ResolutionPolicy.SATISFACTION
|| !(model.getObjective() instanceof IntVar)) {
valueSelector = new IntDomainMin();
} else {
valueSelector = new IntDomainBest();
Solution solution;
if (model.getSolver().defaultSolutionExists()) {
solution = model.getSolver().defaultSolution(); // already attached
} else {
solution = new Solution(model, vars);
model.getSolver().attach(solution);
}
valueSelector = new IntDomainLast(solution, valueSelector, null);
}
return intVarSearch(new DomOverWDeg<>(vars, 0), valueSelector, vars);
}
/**
* Assignment strategy which selects a variable according to DomOverWDeg
and assign
* it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Boosting Systematic Search by Weighting Constraints."
* Boussemart et al. ECAI 2004.
* https://dblp.org/rec/conf/ecai/BoussemartHLS04
*/
public static AbstractStrategy domOverWDegSearch(IntVar... vars) {
return intVarSearch(new DomOverWDeg<>(vars, 0), new IntDomainMin(), vars);
}
/**
* Assignment strategy which selects a variable according to refined DomOverWDeg
and assign
* it to its lower bound, where the weight incrementer is "ca.cd".
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Refining Constraint Weighting." Wattez et al. ICTAI 2019.
* https://dblp.org/rec/conf/ictai/WattezLPT19
*/
public static AbstractStrategy domOverWDegRefSearch(IntVar... vars) {
return intVarSearch(new DomOverWDegRef<>(vars, 0), new IntDomainMin(), vars);
}
/**
* Create an Activity based search strategy.
*
*
Uses public static parameters
* (GAMMA=0.999d, DELTA=0.2d, ALPHA=8, RESTART=1.1d, FORCE_SAMPLING=1)
*
* @param vars collection of variables
* @return an Activity based search strategy.
* @throws IllegalArgumentException when the array of variables is either null or empty.
* @implNote This is based on "Activity-Based Search for Black-Box Constraint Programming Solvers."
* Michel et al. CPAIOR 2012.
* https://dblp.org/rec/conf/cpaior/MichelH12
*/
public static AbstractStrategy activityBasedSearch(IntVar... vars) {
if (vars == null || vars.length == 0) {
throw new IllegalArgumentException("The array of variables cannot be null or empty");
}
return new ActivityBased(vars);
}
/**
* Assignment strategy which selects a variable according to Conflict History
* and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Conflict history based search for constraint satisfaction problem."
* Habet et al. SAC 2019.
* https://dblp.org/rec/conf/sac/HabetT19
*/
public static AbstractStrategy conflictHistorySearch(IntVar... vars) {
return intVarSearch(new ConflictHistorySearch<>(vars, 0), new IntDomainMin(), vars);
}
/**
* Assignment strategy which selects a variable according to Failure rate based
* variable ordering and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs."
* H. Li, M. Yin, and Z. Li, CP 2021.
* https://dblp.org/rec/conf/cp/LiYL21
*/
public static AbstractStrategy failureRateBasedSearch(IntVar... vars) {
return intVarSearch(new FailureBased<>(vars, 0, 2), new IntDomainMin(), vars);
}
/**
* Assignment strategy which selects a variable according to Failure length based
* variable ordering and assigns it to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
* @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs."
* H. Li, M. Yin, and Z. Li, CP 2021.
* https://dblp.org/rec/conf/cp/LiYL21
*/
public static AbstractStrategy failureLengthBasedSearch(IntVar... vars) {
return intVarSearch(new FailureBased<>(vars, 0, 4), new IntDomainMin(), vars);
}
/**
* Assignment strategy which selects a variable according to PickOnDom
and assign.
* This version is based on the variables involved in the propagation.
*
* @param vars list of variables
* @return assignment strategy
* @implNote Based on "Guiding Backtrack Search by Tracking Variables During Constraint Propagation", C. Lecoutre et al., CP 2023.
*
[DOI]:10.4230/LIPIcs.CP.2023.9
*/
public static AbstractStrategy pickOnDom(IntVar... vars) {
return intVarSearch(new PickOnDom<>(vars), new IntDomainMin(), vars);
}
/**
* Assignment strategy which selects a variable according to PickOnDom
and assign.
* This version is based on the constraints involved in the propagation.
*
* @param vars list of variables
* @return assignment strategy
* @implNote Based on "Guiding Backtrack Search by Tracking Variables During Constraint Propagation", C. Lecoutre et al., CP 2023.
*
[DOI]:10.4230/LIPIcs.CP.2023.9
*/
public static AbstractStrategy pickOnFil(IntVar... vars) {
return intVarSearch(new PickOnDom<>(vars), new IntDomainMin(), vars);
}
/**
* Randomly selects a variable and assigns it to a value randomly taken in - the domain in case
* the variable has an enumerated domain - {LB,UB} (one of the two bounds) in case the domain is
* bounded
*
* @param vars list of variables
* @param seed a seed for random
* @return assignment strategy
*/
public static IntStrategy randomSearch(IntVar[] vars, long seed) {
IntValueSelector value = new IntDomainRandom(seed);
IntValueSelector bound = new IntDomainRandomBound(seed);
IntValueSelector selector = var -> {
if (var.hasEnumeratedDomain()) {
return value.selectValue(var);
} else {
return bound.selectValue(var);
}
};
return intVarSearch(new Random<>(seed), selector, vars);
}
/**
* Defines a branching strategy over the objective variable Note that it is only activated after
* a first solution. This should be completed with another strategy with a larger scope.
*
* @param objective objective variable
* @param optPolicy policy to adopt for the optimization process
* @return a assignment strategy
*/
public static AbstractStrategy objectiveStrategy(IntVar objective,
OptimizationPolicy optPolicy) {
return new ObjectiveStrategy(objective, optPolicy);
}
// ************************************************************************************
// SOME EXAMPLES OF STRATEGIES YOU CAN BUILD
// ************************************************************************************
/**
* Assigns the first non-instantiated variable to its lower bound.
*
* @param vars list of variables
* @return int strategy based on value assignments
*/
public static IntStrategy inputOrderLBSearch(IntVar... vars) {
return intVarSearch(new InputOrder<>(vars[0].getModel()), new IntDomainMin(), vars);
}
/**
* Assigns the first non-instantiated variable to its upper bound.
*
* @param vars list of variables
* @return assignment strategy
*/
public static IntStrategy inputOrderUBSearch(IntVar... vars) {
return intVarSearch(new InputOrder<>(vars[0].getModel()), new IntDomainMax(), vars);
}
/**
* Assigns the non-instantiated variable of the smallest domain size to its lower bound.
*
* @param vars list of variables
* @return assignment strategy
*/
public static IntStrategy minDomLBSearch(IntVar... vars) {
return intVarSearch(new FirstFail(vars[0].getModel()), new IntDomainMin(), vars);
}
/**
* Assigns the non-instantiated variable of the smallest domain size to its upper bound.
*
* @param vars list of variables
* @return assignment strategy
*/
public static IntStrategy minDomUBSearch(IntVar... vars) {
return intVarSearch(new FirstFail(vars[0].getModel()), new IntDomainMax(), vars);
}
// ************************************************************************************
// DEFAULT STRATEGY (COMPLETE)
// ************************************************************************************
/**
* Set the default search strategy for the given model. This heuristic is complete (handles
* IntVar, BoolVar, SetVar, GraphVar, and RealVar)
*
* @param model a model requiring a default search strategy
*/
public static void defaultSearch(Model model) {
BlackBoxConfigurator.init().make(model);
}
/**
*
* Create a strategy which lets Ibex terminates the solving process for the CSP,
* once all integer variables have been instantiated.
*
* Note that if the system is not constrained enough, there can be an infinite number of
* solutions.
*
* For example, solving the function
x,y in [0.0,1.0] with
x + y = 1.0
will
* return x,y in [0.0,1.0] and not a single solution.
*
* If one wants a unique solution, calling {@link #realVarSearch(RealVar...)} should be
* considered.
*
*
* @param model declaring model
* @return a strategy that lets Ibex terminates the solving process.
*/
public static AbstractStrategy ibexSolving(Model model) {
//noinspection unchecked
return new AbstractStrategy(model.getVars()) {
final IbexDecision dec = new IbexDecision(model);
@Override
public Decision getDecision() {
if (dec.inUse()) {
return null;
} else {
return dec;
}
}
};
}
}