All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.util.tools.RealUtils Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2020, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.util.tools;

import org.chocosolver.solver.expression.continuous.arithmetic.RealIntervalConstant;
import org.chocosolver.util.objects.RealInterval;

/**
 * Some tools for float computing.
 * Inspired from IAMath : interval.sourceforge.net
 * 
* * @author Charles Prud'homme * @author Guillaum Rochart * @since 23/01/2020 */ public class RealUtils { private static final double ZERO = 0.0; private static final double NEG_ZER0 = 0.0 * -1.0; /** * Returns the double value just after 'x'. * @param x a double * @return the floating point just after 'x'. */ public static double nextFloat(double x) { if (x < 0) { return Double.longBitsToDouble(Double.doubleToLongBits(x) - 1); } else if (x == 0) { return Double.longBitsToDouble(1); } else if (x < Double.POSITIVE_INFINITY) { return Double.longBitsToDouble(Double.doubleToLongBits(x) + 1); } else { return x; // nextFloat(infty) = infty } } /** * Returns the double value just before 'x'. * @param x a double * @return the floating point just before 'x'. */ public static double prevFloat(double x) { if (x == 0.0) { return -nextFloat(0.0); } else { return -nextFloat(-x); } } /** * Returns an interval that represents the result of an addition between interval 'x' and 'y'. *

[l(x)+l(y), u(x)+u(y)]

* @param x an interval * @param y an interval * @return an interval that represents the result of the addition 'x + y' */ public static RealInterval add(RealInterval x, RealInterval y) { return new RealIntervalConstant(prevFloat(x.getLB() + y.getLB()), nextFloat(x.getUB() + y.getUB())); } /** * Returns an interval that represents the result of a difference between interval 'x' and 'y'. *

[l(x)-l(y), u(x)-u(y)]

* @param x an interval * @param y an interval * @return an interval that represents the result of the difference : 'x - y' */ public static RealInterval sub(RealInterval x, RealInterval y) { return new RealIntervalConstant(prevFloat(x.getLB() - y.getUB()), nextFloat(x.getUB() - y.getLB())); } /** * Returns an interval that represents the result of a multiplication between interval 'x' and 'y'. * The results depends on whether 'x' or 'y' overlap 0.0 or not. * @param x an interval * @param y an interval * @return an interval that represents the result of the multiplication : 'x * y' */ public static RealInterval mul(RealInterval x, RealInterval y) { double i, s; if ((x.getLB() == 0.0 && x.getUB() == 0.0) || (y.getLB() == 0.0 && y.getUB() == 0.0)) { i = NEG_ZER0; // Ca peut etre utile pour rejoindre des intervalles : si on veut aller de -5 a 0, s = 0.0; // ca sera 0-. } else { if (x.getLB() >= 0.0) { if (y.getLB() >= 0.0) { i = Math.max(ZERO, prevFloat(x.getLB() * y.getLB())); // Si x et y positifs, on ne veut pas etre n?gatif ! s = nextFloat(x.getUB() * y.getUB()); } else if (y.getUB() <= 0.0) { i = prevFloat(x.getUB() * y.getLB()); s = Math.min(ZERO, nextFloat(x.getLB() * y.getUB())); } else { i = prevFloat(x.getUB() * y.getLB()); s = nextFloat(x.getUB() * y.getUB()); } } else if (x.getUB() <= 0.0) { if (y.getLB() >= 0.0) { i = prevFloat(x.getLB() * y.getUB()); s = Math.min(ZERO, nextFloat(x.getUB() * y.getLB())); } else if (y.getUB() <= 0.0) { i = Math.max(ZERO, prevFloat(x.getUB() * y.getUB())); s = nextFloat(x.getLB() * y.getLB()); } else { i = prevFloat(x.getLB() * y.getUB()); s = nextFloat(x.getLB() * y.getLB()); } } else { if (y.getLB() >= 0.0) { i = prevFloat(x.getLB() * y.getUB()); s = nextFloat(x.getUB() * y.getUB()); } else if (y.getUB() <= 0.0) { i = prevFloat(x.getUB() * y.getLB()); s = nextFloat(x.getLB() * y.getLB()); } else { i = Math.min(prevFloat(x.getLB() * y.getUB()), prevFloat(x.getUB() * y.getLB())); s = Math.max(nextFloat(x.getLB() * y.getLB()), nextFloat(x.getUB() * y.getUB())); } } } return new RealIntervalConstant(i, s); } /** * Returns an interval that represents the result of a division of 'x' by 'y'. * The results depends on whether 'x' or 'y' overlap 0.0 or not. * @param x an interval * @param y an interval * @return an interval that represents the result of the division : 'x / y'. */ public static RealInterval odiv(RealInterval x, RealInterval y) { if (y.getLB() >= 0.0 && y.getUB() <= 0.0) { throw new ArithmeticException("the divisor is 0"); } else { double yl = y.getLB(); double yh = y.getUB(); double i, s; i = Double.NEGATIVE_INFINITY; s = Double.POSITIVE_INFINITY; if (yh == 0.0) yh = NEG_ZER0; if (x.getLB() >= 0.0) { if (yl >= 0.0) { i = Math.max(ZERO, prevFloat(x.getLB() / yh)); s = nextFloat(x.getUB() / yl); } else if (yh <= 0.0) { // yh <= 0 i = prevFloat(x.getUB() / yh); s = Math.min(ZERO, nextFloat(x.getLB() / yl)); } // else skip : 0 in y } else if (x.getUB() <= 0.0) { if (yl >= 0.0) { i = prevFloat(x.getLB() / yl); s = Math.min(ZERO, nextFloat(x.getUB() / yh)); } else if (yh <= 0.0) { // yh <= 0 i = Math.max(ZERO, prevFloat(x.getUB() / yl)); s = nextFloat(x.getLB() / yh); } // else skip : 0 in y } else { if (yl >= 0.0) { i = prevFloat(x.getLB() / yl); s = nextFloat(x.getUB() / yl); } else if (yh <= 0.0) { // yh <= 0 i = prevFloat(x.getUB() / yh); s = nextFloat(x.getLB() / yh); } // else skip : 0 in y } return new RealIntervalConstant(i, s); } } /** * Returns an interval that represents the result of a division of 'x' by 'y'. * 'res' is the one that will intersect the resulting interval * and is given to provide sharpest interval when 0.0 is overlapped. * @param x an interval * @param y an interval * @return an interval that represents the result of the division : 'x / y'. */ public static RealInterval odiv_wrt(RealInterval x, RealInterval y, RealInterval res) { if (y.getLB() > 0.0 || y.getUB() < 0.0) { // y != 0 return odiv(x, y); } else { double resl = res.getLB(); double resh = res.getUB(); if (x.getLB() >= 0.0) { double tmp_neg = nextFloat(x.getLB() / y.getLB()); // la plus grande valeur negative double tmp_pos = prevFloat(x.getLB() / y.getUB()); // la plus petite valeur positive if ((resl > tmp_neg || resl == 0.0) && resl < tmp_pos) resl = tmp_pos; if ((resh < tmp_pos || resh == 0.0) && resh > tmp_neg) resh = tmp_neg; } else if (x.getUB() <= 0.0) { double tmp_neg = nextFloat(x.getUB() / y.getUB()); double tmp_pos = nextFloat(x.getUB() / y.getLB()); if ((resl > tmp_neg || resl == 0.0) && resl < tmp_pos) resl = tmp_pos; if ((resh < tmp_pos || resh == 0.0) && resh > tmp_neg) resh = tmp_neg; } return new RealIntervalConstant(resl, resh); } } /** * Given an interval 'i = [a,b]' returns an interval [a, a + (b-a)/2]. * @param i an interval * @return the first half of 'i' */ public static RealInterval firstHalf(RealInterval i) { double inf = i.getLB(); if (inf == Double.NEGATIVE_INFINITY) { inf = -Double.MAX_VALUE; } double sup = i.getUB(); if (sup == Double.POSITIVE_INFINITY) { sup = Double.MAX_VALUE; } return new RealIntervalConstant(i.getLB(), inf + sup / 2.0 - inf / 2.0); } /** * Given an interval 'i = [a,b]' returns an interval [a + (b-a)/2, b]. * @param i an interval * @return the second half of 'i' */ public static RealInterval secondHalf(RealInterval i) { double inf = i.getLB(); if (inf == Double.NEGATIVE_INFINITY) { inf = -Double.MAX_VALUE; } double sup = i.getUB(); if (sup == Double.POSITIVE_INFINITY) { sup = Double.MAX_VALUE; } return new RealIntervalConstant(inf + sup / 2.0 - inf / 2.0, i.getUB()); } private static double iPower_lo(double x, int p) { // TODO : to check ! // x >= 0 et p > 1 entier if (x == 0) return 0; if (x == 1) return 1; return prevFloat(Math.exp(prevFloat(p * prevFloat(Math.log(x))))); } private static double iPower_up(double x, int p) { if (x == 0) return 0; if (x == 1) return 1; return nextFloat(Math.exp(nextFloat(p * nextFloat(Math.log(x))))); } private static RealInterval evenIPower(RealInterval i, int p) { double inf, sup; if (i.getLB() >= 0.0) { if (i.getLB() == Double.POSITIVE_INFINITY) { inf = Double.POSITIVE_INFINITY; sup = Double.POSITIVE_INFINITY; } else { inf = iPower_lo(i.getLB(), p); if (i.getUB() == Double.POSITIVE_INFINITY) { sup = Double.POSITIVE_INFINITY; } else { sup = iPower_up(i.getUB(), p); } } } else if (i.getUB() <= 0.0) { if (i.getUB() == Double.NEGATIVE_INFINITY) { inf = Double.POSITIVE_INFINITY; sup = Double.POSITIVE_INFINITY; } else { inf = iPower_lo(-i.getUB(), p); if (i.getLB() == Double.NEGATIVE_INFINITY) { sup = Double.POSITIVE_INFINITY; } else { sup = iPower_up(-i.getLB(), p); } } } else { inf = 0; if (i.getLB() == Double.NEGATIVE_INFINITY || i.getUB() == Double.POSITIVE_INFINITY) { sup = Double.POSITIVE_INFINITY; } else { sup = Math.max(iPower_up(-i.getLB(), p), iPower_up(i.getUB(), p)); } } return new RealIntervalConstant(inf, sup); } private static RealInterval oddIPower(RealInterval i, int p) { double inf, sup; if (i.getLB() >= 0.0) { if (i.getLB() == Double.POSITIVE_INFINITY) { inf = Double.POSITIVE_INFINITY; sup = Double.POSITIVE_INFINITY; } else { inf = iPower_lo(i.getLB(), p); if (i.getUB() == Double.POSITIVE_INFINITY) { sup = Double.POSITIVE_INFINITY; } else { sup = iPower_up(i.getUB(), p); } } } else if (i.getUB() <= 0.0) { if (i.getUB() == Double.NEGATIVE_INFINITY) { inf = Double.NEGATIVE_INFINITY; sup = Double.NEGATIVE_INFINITY; } else { sup = -iPower_lo(-i.getUB(), p); if (i.getLB() == Double.NEGATIVE_INFINITY) { inf = Double.NEGATIVE_INFINITY; } else { inf = -iPower_up(-i.getLB(), p); } } } else { if (i.getLB() == Double.NEGATIVE_INFINITY) { inf = Double.NEGATIVE_INFINITY; } else { inf = -iPower_up(-i.getLB(), p); } if (i.getUB() == Double.POSITIVE_INFINITY) { sup = Double.POSITIVE_INFINITY; } else { sup = iPower_up(i.getUB(), p); } } return new RealIntervalConstant(inf, sup); } /** * Returns an interval that represents the result of 'i^p', where 'p' is an integer. * The results depends on whether 'p' is odd or even. * @param i an interval * @param p an integer * @return an interval that represents the result of : 'i^p'. */ public static RealInterval iPower(RealInterval i, int p) { if (p <= 1) { throw new UnsupportedOperationException(); } if (p % 2 == 0) { // pair return evenIPower(i, p); } else { // impair return oddIPower(i, p); } } private static double iRoot_lo(double x, int p) { // TODO : to check !! double d_lo = prevFloat(1.0 / (double) p); double d_hi = nextFloat(1.0 / (double) p); if (x == Double.POSITIVE_INFINITY) { return Double.POSITIVE_INFINITY; } else if (x == 0) return 0; else if (x == 1) return 1; else if (x < 1) return prevFloat(Math.exp(prevFloat(d_hi * prevFloat(Math.log(x))))); else return prevFloat(Math.exp(prevFloat(d_lo * prevFloat(Math.log(x))))); } private static double iRoot_up(double x, int p) { double d_lo = prevFloat(1.0 / (double) p); double d_hi = nextFloat(1.0 / (double) p); if (x == Double.POSITIVE_INFINITY) { return Double.POSITIVE_INFINITY; } else if (x == 0) return 0; else if (x == 1) return 1; else if (x < 1) return nextFloat(Math.exp(nextFloat(d_lo * nextFloat(Math.log(x))))); else return nextFloat(Math.exp(nextFloat(d_hi * nextFloat(Math.log(x))))); } private static RealInterval evenIRoot(RealInterval i, int p) { if (i.getUB() < 0) { System.err.println("Erreur !!"); } double inf = i.getLB() < 0. ? 0. : iRoot_lo(i.getLB(), p); double sup = iRoot_up(i.getUB(), p); return new RealIntervalConstant(inf, sup); } private static RealInterval evenIRoot(RealInterval i, int p, RealInterval res) { if (i.getUB() < 0) { System.err.println("Erreur !!"); } double inf, sup; if (i.getLB() < 0) inf = 0; else inf = iRoot_lo(i.getLB(), p); sup = iRoot_up(i.getUB(), p); if (res.getUB() < inf) return new RealIntervalConstant(-sup, -inf); else if (res.getLB() > sup) return new RealIntervalConstant(inf, sup); else return new RealIntervalConstant(-sup, sup); } private static RealInterval oddIRoot(RealInterval i, int p) { double inf, sup; if (i.getLB() >= 0) { inf = iRoot_lo(i.getLB(), p); } else { inf = -iRoot_up(-i.getLB(), p); } if (i.getUB() >= 0) { sup = iRoot_up(i.getUB(), p); } else { sup = -iRoot_lo(-i.getUB(), p); } return new RealIntervalConstant(inf, sup); } /** * Returns an interval that represents the result of 'i^(1/p)', where 'p' is an integer. * The results depends on whether 'p' is odd or even. * @param i an interval * @param p an integer * @return an interval that represents the result of : 'i^(1/p)'. */ public static RealInterval iRoot(RealInterval i, int p) { if (p <= 1) { throw new UnsupportedOperationException(); } if (p % 2 == 0) { return evenIRoot(i, p); } else { return oddIRoot(i, p); } } /** * Returns an interval that represents the result of 'i^(1/p)', where 'p' is an integer. * The results depends on whether 'p' is odd or even. * 'res' is the one that will intersect the resulting interval * and is given to provide sharpest interval when 0.0 is overlapped. * @param i an interval * @param p an integer * @param res interval that will intersect the resulting interval * @return an interval that represents the result of : 'i^(1/p)'. */ public static RealInterval iRoot(RealInterval i, int p, RealInterval res) { if (p <= 1) { throw new UnsupportedOperationException(); } if (p % 2 == 0) { return evenIRoot(i, p, res); } else { return oddIRoot(i, p); } } private static RealInterval sinRange(int a, int b) { switch (4 * a + b) { case 1: return new RealIntervalConstant(1.0, 1.0); case 2: case 13: return new RealIntervalConstant(0.0, 1.0); case 6: case 12: return new RealIntervalConstant(0.0, 0.0); case 7: case 8: return new RealIntervalConstant(-1.0, 0.0); case 11: return new RealIntervalConstant(-1.0, -1.0); default: throw new UnsupportedOperationException(); } } /** * Returns an interval that represents the result of 'cos(i)'. * @param i an interval * @return the result of 'cos(i)' */ public static RealInterval cos(RealInterval i) { if (i.getUB() - i.getLB() > prevFloat(1.5 * prevFloat(Math.PI))) { return new RealIntervalConstant(-1.0, 1.0); } int nlo, nup; if (i.getLB() >= 0) { nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / nextFloat(Math.PI))); } else { nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / prevFloat(Math.PI))); } if (i.getUB() >= 0) { nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / prevFloat(Math.PI))); } else { nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / nextFloat(Math.PI))); } if ((((nup - nlo) % 4) + 4) % 4 == 3) { return new RealIntervalConstant(-1.0, 1.0); } double clo = Math.min(prevFloat(Math.cos(i.getLB())), prevFloat(Math.cos(i.getUB()))); double cup = Math.max(nextFloat(Math.cos(i.getLB())), nextFloat(Math.cos(i.getUB()))); if ((((nup - nlo) % 4) + 4) % 4 == 0) { return new RealIntervalConstant(clo, cup); } RealInterval mask = sinRange((((nlo + 1) % 4) + 4) % 4, (((nup + 1) % 4) + 4) % 4); if (mask.getLB() < clo) { clo = mask.getLB(); } if (mask.getUB() > cup) { cup = mask.getUB(); } return new RealIntervalConstant(clo, cup); } /** * Returns an interval that represents the result of 'sin(i)'. * @param i an interval * @return the result of 'sin(i)' */ public static RealInterval sin(RealInterval i) { if (i.getUB() - i.getLB() > prevFloat(1.5 * prevFloat(Math.PI))) { return new RealIntervalConstant(-1.0, 1.0); } int nlo, nup; if (i.getLB() >= 0) { nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / nextFloat(Math.PI))); } else { nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / prevFloat(Math.PI))); } if (i.getUB() >= 0) { nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / prevFloat(Math.PI))); } else { nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / nextFloat(Math.PI))); } if ((((nup - nlo) % 4) + 4) % 4 == 3) { return new RealIntervalConstant(-1.0, 1.0); } double clo = Math.min(prevFloat(Math.sin(i.getLB())), prevFloat(Math.sin(i.getUB()))); double cup = Math.max(nextFloat(Math.sin(i.getLB())), nextFloat(Math.sin(i.getUB()))); if ((((nup - nlo) % 4) + 4) % 4 == 0) { return new RealIntervalConstant(clo, cup); } RealInterval mask = sinRange(((nlo % 4) + 4) % 4, ((nup % 4) + 4) % 4); if (mask.getLB() < clo) { clo = mask.getLB(); } if (mask.getUB() > cup) { cup = mask.getUB(); } return new RealIntervalConstant(clo, cup); } /** * Returns an interval that represents the result of a division of 'asin(i)'. * 'res' is the one that will intersect the resulting interval * and is given to provide sharpest interval. * @param i an interval * @param res an interval * @return an interval that represents the result of the division : 'asin(i)'. */ public static RealInterval asin_wrt(RealInterval i, RealInterval res) { double retSup = Double.POSITIVE_INFINITY, retInf = Double.NEGATIVE_INFINITY; double asinl = prevFloat(Math.asin(i.getLB())); double asinu = nextFloat(Math.asin(i.getUB())); // Lower bound int modSup = (int) Math.floor((res.getLB() + nextFloat(Math.PI)) / prevFloat(2 * Math.PI)); double decSup, decInf; if (modSup < 0) { decSup = nextFloat(2 * modSup * prevFloat(Math.PI)); decInf = prevFloat(2 * modSup * nextFloat(Math.PI)); } else if (modSup > 0) { decSup = nextFloat(2 * modSup * nextFloat(Math.PI)); decInf = prevFloat(2 * modSup * prevFloat(Math.PI)); } else { decSup = 0.0; decInf = 0.0; } if (i.getLB() > -1.0) { if ((res.getLB() > nextFloat(nextFloat(-Math.PI) - asinl + decSup)) && (res.getLB() < prevFloat(asinl + decInf))) { retInf = prevFloat(asinl + decInf); } if ((res.getLB() > nextFloat(nextFloat(Math.PI) - asinl + decSup)) && (res.getLB() < prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf))) { retInf = prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf); } } if (i.getUB() < 1.0) { if ((res.getLB() > asinu + decSup) && (res.getLB() < prevFloat(prevFloat(Math.PI) - asinu) + decInf)) { retInf = prevFloat(prevFloat(Math.PI) - asinu) + decInf; } } // Upper bound modSup = (int) Math.floor((res.getUB() + nextFloat(Math.PI)) / prevFloat(2 * Math.PI)); if (modSup < 0) { decSup = nextFloat(2 * modSup * prevFloat(Math.PI)); decInf = prevFloat(2 * modSup * nextFloat(Math.PI)); } else if (modSup > 0) { decSup = nextFloat(2 * modSup * nextFloat(Math.PI)); decInf = prevFloat(2 * modSup * prevFloat(Math.PI)); } else { decSup = 0.0; decInf = 0.0; } if (i.getLB() > -1.0) { if ((res.getUB() > nextFloat(nextFloat(-Math.PI) - asinl + decSup)) && (res.getUB() < prevFloat(asinl + decInf))) { retSup = nextFloat(nextFloat(-Math.PI) - asinl + decSup); } if ((res.getUB() > nextFloat(nextFloat(Math.PI) - asinl + decSup)) && (res.getUB() < prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf))) { retSup = nextFloat(nextFloat(Math.PI) - asinl + decSup); } } if (i.getUB() < 1.0) { if ((res.getUB() > asinu + decSup) && (res.getUB() < prevFloat(prevFloat(Math.PI) - asinu) + decInf)) { retSup = asinu + decSup; } } return new RealIntervalConstant(retInf, retSup); } /** * Returns an interval that represents the result of a division of 'acos(i)'. * 'res' is the one that will intersect the resulting interval * and is given to provide sharpest. * @param i an interval * @param res an interval * @return an interval that represents the result of the division : 'acos(i)'. */ public static RealInterval acos_wrt(RealInterval i, RealInterval res) { double retSup = Double.POSITIVE_INFINITY, retInf = Double.NEGATIVE_INFINITY; double acosl = prevFloat(Math.acos(i.getUB())); double acosu = nextFloat(Math.acos(i.getLB())); // Lower bound int modSup = (int) Math.floor(res.getLB() / prevFloat(2 * Math.PI)); double decSup, decInf; if (modSup < 0) { decSup = nextFloat(2 * modSup * prevFloat(Math.PI)); decInf = prevFloat(2 * modSup * nextFloat(Math.PI)); } else if (modSup > 0) { decSup = nextFloat(2 * modSup * nextFloat(Math.PI)); decInf = prevFloat(2 * modSup * prevFloat(Math.PI)); } else { decSup = 0.0; decInf = 0.0; } if (i.getUB() < 1.0) { if ((res.getLB() > nextFloat(decSup - acosl)) && (res.getLB() < prevFloat(decInf + acosl))) { retInf = prevFloat(decInf + acosl); } if ((res.getLB() > nextFloat(2 * nextFloat(Math.PI) - acosl + decSup)) && (res.getLB() < prevFloat(2 * prevFloat(Math.PI) + acosl + decInf))) { retInf = prevFloat(2 * prevFloat(Math.PI) + acosl + decInf); } } if (i.getLB() > -1.0) { if ((res.getLB() > nextFloat(acosu + decSup)) && (res.getLB() < prevFloat(2 * prevFloat(Math.PI) - acosu + decInf))) { retInf = prevFloat(2 * prevFloat(Math.PI) - acosu + decInf); } } // Upper bound modSup = (int) Math.floor(res.getUB() / prevFloat(2 * Math.PI)); if (modSup < 0) { decSup = nextFloat(2 * modSup * prevFloat(Math.PI)); decInf = prevFloat(2 * modSup * nextFloat(Math.PI)); } else if (modSup > 0) { decSup = nextFloat(2 * modSup * nextFloat(Math.PI)); decInf = prevFloat(2 * modSup * prevFloat(Math.PI)); } else { decSup = 0.0; decInf = 0.0; } if (i.getUB() < 1.0) { if ((res.getUB() > nextFloat(decSup - acosl)) && (res.getUB() < prevFloat(decInf + acosl))) { retSup = nextFloat(decSup - acosl); } if ((res.getUB() > nextFloat(2 * nextFloat(Math.PI) - acosl + decSup)) && (res.getUB() < prevFloat(2 * prevFloat(Math.PI) + acosl + decInf))) { retSup = nextFloat(2 * nextFloat(Math.PI) - acosl + decSup); } } if (i.getLB() > -1.0) { if ((res.getUB() > nextFloat(acosu + decSup)) && (res.getUB() < prevFloat(2 * prevFloat(Math.PI) - acosu + decInf))) { retSup = nextFloat(acosu + decSup); } } return new RealIntervalConstant(retInf, retSup); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy