All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.Model Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2020, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.solver;

import gnu.trove.map.hash.TIntObjectHashMap;
import org.chocosolver.memory.EnvironmentBuilder;
import org.chocosolver.memory.IEnvironment;
import org.chocosolver.solver.constraints.Constraint;
import org.chocosolver.solver.constraints.ConstraintsName;
import org.chocosolver.solver.constraints.Propagator;
import org.chocosolver.solver.constraints.nary.clauses.ClauseBuilder;
import org.chocosolver.solver.constraints.nary.clauses.ClauseConstraint;
import org.chocosolver.solver.constraints.nary.cnf.PropFalse;
import org.chocosolver.solver.constraints.nary.cnf.PropTrue;
import org.chocosolver.solver.constraints.nary.cnf.SatConstraint;
import org.chocosolver.solver.constraints.nary.nogood.NogoodConstraint;
import org.chocosolver.solver.constraints.real.IbexHandler;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.exception.SolverException;
import org.chocosolver.solver.objective.IObjectiveManager;
import org.chocosolver.solver.objective.ObjectiveFactory;
import org.chocosolver.solver.propagation.PropagationEngine;
import org.chocosolver.solver.variables.*;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.function.Function;

/**
 * The Model is the header component of Constraint Programming.
 * It embeds the list of Variable (and their Domain), the Constraint's network,
 * and a IPropagationEngine to pilot the propagation.
* Model includes a AbstractSearchLoop to guide the search loop: applying decisions and propagating, * running backups and rollbacks and storing solutions. * * @author Xavier Lorca * @author Charles Prud'homme * @author Jean-Guillaume Fages * @author Arnaud Malapert * @version 0.01, june 2010 * @see org.chocosolver.solver.variables.Variable * @see org.chocosolver.solver.constraints.Constraint * @since 0.01 */ public class Model implements IModel { //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// PRIVATE FIELDS ///////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// public static boolean MAXIMIZE = true; public static boolean MINIMIZE = false; /** * Name of internal hook dedicated to store declared {@link org.chocosolver.solver.variables.Task}. */ public static final String TASK_SET_HOOK_NAME = "H_TASKSET"; public static final String MINISAT_HOOK_NAME = "H_MINISAT"; public static final String NOGOODS_HOOK_NAME = "H_NOGOODS"; public static final String CLAUSES_HOOK_NAME = "H_CLAUSES"; public static final String CLAUSESBUILDER_HOOK_NAME = "H_CLAUSESBUILDER"; public static final String IBEX_HOOK_NAME = "H_IBEX"; /** * Settings to use with this solver */ private final Settings settings; /** * A map to cache constants (considered as fixed variables) */ private TIntObjectHashMap cachedConstants; /** * Variables of the model */ private Variable[] vars; /** * Index of the last added variable */ private int vIdx; /** * Store the number of declared {@link IntVar}, including {@link BoolVar}. */ private int nbIntVar; /** * Store the number of declared {@link BoolVar}. */ private int nbBoolVar; /** * Store the number of declared {@link SetVar}. */ private int nbSetVar; /** * Store the number of declared {@link RealVar}. */ private int nbRealVar; /** * Constraints of the model */ private Constraint[] cstrs; /** * Index of the last added constraint */ private int cIdx; /** * Environment, based of the search tree (trailing or copying) */ private final IEnvironment environment; /** * Resolver of the model, controls propagation and search */ private final Solver solver; /** * Variable to optimize, possibly null. */ private Variable objective; /** * Precision to consider when optimizing a RealVariable */ private double precision = 0.0001D; /** * Model name */ private String name; /** * Stores this model's creation time -- in nanoseconds */ private long creationTime; /** * Counter used to set ids to variables and propagators */ private int id = 1; /** * Counter used to name variables created internally */ private int nameId = 1; /** * Enable attaching hooks to a model. */ private Map hooks; /** * Resolution policy (sat/min/max) */ private ResolutionPolicy policy = ResolutionPolicy.SATISFACTION; /** * A seed for randomness */ private long seed = 0L; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// CONSTRUCTORS /////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model is named name and it uses a specific backtracking environment. * * @param environment a backtracking environment to allow search * @param name The name of the model (for logging purpose) * @param settings settings to use */ public Model(IEnvironment environment, String name, Settings settings) { this.name = name; this.vars = new Variable[32]; this.vIdx = 0; this.cstrs = new Constraint[32]; this.cIdx = 0; this.environment = environment; this.creationTime = System.nanoTime(); this.cachedConstants = new TIntObjectHashMap<>(16, 1.5f, Integer.MAX_VALUE); this.objective = null; this.hooks = new HashMap<>(); this.settings = settings; this.solver = settings.initSolver(this); } /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model is named name and it uses a specific backtracking environment. * * @param environment a backtracking environment to allow search * @param name The name of the model (for logging purpose) */ public Model(IEnvironment environment, String name) { this(environment, name, new DefaultSettings()); } /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model is named name and it uses a specific backtracking environment. * * @param name The name of the model (for logging purpose) * @param settings settings to use */ public Model(String name, Settings settings) { this(new EnvironmentBuilder().fromFlat().build(), name, settings); } /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model is named name and uses the default (trailing) backtracking environment. * * @param name The name of the model (for logging purpose) * @see Model#Model(org.chocosolver.memory.IEnvironment, String, Settings) */ public Model(String name) { this(new EnvironmentBuilder().fromFlat().build(), name, new DefaultSettings()); } /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model is uses the default (trailing) backtracking environment. * * @param settings settings to use * @see Model#Model(org.chocosolver.memory.IEnvironment, String, Settings) */ public Model(Settings settings) { this(new EnvironmentBuilder().fromFlat().build(), "Model-" + nextModelNum(), settings); } /** * Creates a Model object to formulate a decision problem by declaring variables and posting constraints. * The model uses the default (trailing) backtracking environment. * * @see Model#Model(String) */ public Model() { this("Model-" + nextModelNum()); } /** * For autonumbering anonymous models. */ private static int modelInitNumber; /** * @return next model's number, for anonymous models. */ private static synchronized int nextModelNum() { return modelInitNumber++; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// GETTERS //////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Get the creation time (in milliseconds) of the model (to estimate modeling duration) * * @return the time (in ms) of the creation of the model */ public long getCreationTime() { return creationTime; } /** * Get the resolution policy of the model * * @return the resolution policy of the model * @see ResolutionPolicy */ public ResolutionPolicy getResolutionPolicy() { return policy; } /** * Get the map of constant IntVar the have default names to avoid creating multiple identical constants. * Should not be called by the user. * * @return the map of constant IntVar having default names. */ public TIntObjectHashMap getCachedConstants() { return cachedConstants; } /** * The basic "true" constraint, which is always satisfied * * @return a "true" constraint */ public Constraint trueConstraint() { return new Constraint(ConstraintsName.TRUE, new PropTrue(boolVar(true))); } /** * The basic "false" constraint, which is always violated * * @return a "false" constraint */ public Constraint falseConstraint() { return new Constraint(ConstraintsName.FALSE, new PropFalse(boolVar(false))); } /** * Returns the unique and internal propagation and search object to solve this model. * * @return the unique and internal Resolver object. */ public Solver getSolver() { return solver; } /** * Returns the array of Variable objects declared in this Model. * * @return array of all variables in this model */ public Variable[] getVars() { return Arrays.copyOf(vars, vIdx); } /** * Returns the number of variables involved in this. * * @return number of variables in this model */ public int getNbVars() { return vIdx; } /** * Returns the ith variable within the array of variables defined in this. * * @param i index of the variable to return. * @return the ith variable of this model */ public Variable getVar(int i) { return vars[i]; } /** * Returns the number of {@link IntVar} of the model involved in this, * excluding {@link BoolVar} if includeBoolVar=false. * It also counts FIXED variables and VIEWS, if any. * * @param includeBoolVar indicates whether or not to include {@link BoolVar} * @return the number of {@link IntVar} of the model involved in this */ public int getNbIntVar(boolean includeBoolVar) { return nbIntVar + (includeBoolVar ? nbBoolVar : 0); } /** * Iterate over the variable of this and build an array that contains all the {@link IntVar} of the model. * excludes {@link BoolVar} if includeBoolVar=false. * It also contains FIXED variables and VIEWS, if any. * * @param includeBoolVar indicates whether or not to include {@link BoolVar} * @return array of {@link IntVar} in this model */ public IntVar[] retrieveIntVars(boolean includeBoolVar) { int size = getNbIntVar(includeBoolVar); IntVar[] ivars = new IntVar[size]; int k = 0; for (int i = 0; i < vIdx; i++) { int kind = (vars[i].getTypeAndKind() & Variable.KIND); if (kind == Variable.INT || (includeBoolVar && kind == Variable.BOOL)) { ivars[k++] = (IntVar) vars[i]; } } assert k == size; return ivars; } /** * Returns the number of {@link BoolVar} of the model involved in this, * It also counts FIXED variables and VIEWS, if any. * * @return the number of {@link BoolVar} of the model involved in this */ public int getNbBoolVar() { return nbBoolVar; } /** * Iterate over the variable of this and build an array that contains the {@link BoolVar} only. * It also contains FIXED variables and VIEWS, if any. * * @return array of {@link BoolVar} in this model */ public BoolVar[] retrieveBoolVars() { int size = getNbBoolVar(); BoolVar[] bvars = new BoolVar[size]; int k = 0; for (int i = 0; i < vIdx; i++) { if ((vars[i].getTypeAndKind() & Variable.KIND) == Variable.BOOL) { bvars[k++] = (BoolVar) vars[i]; } } assert k == size; return bvars; } /** * Returns the number of {@link SetVar} of the model involved in this, * It also counts FIXED variables and VIEWS, if any. * * @return the number of {@link SetVar} of the model involved in this */ public int getNbSetVar() { return nbSetVar; } /** * Iterate over the variable of this and build an array that contains the {@link SetVar} only. * It also contains FIXED variables and VIEWS, if any. * * @return array of SetVars in this model */ public SetVar[] retrieveSetVars() { int size = getNbSetVar(); SetVar[] svars = new SetVar[size]; int k = 0; for (int i = 0; i < vIdx; i++) { if ((vars[i].getTypeAndKind() & Variable.KIND) == Variable.SET) { svars[k++] = (SetVar) vars[i]; } } assert k == size; return svars; } /** * Returns the number of {@link RealVar} of the model involved in this, * It also counts FIXED variables and VIEWS, if any. * * @return the number of {@link RealVar} of the model involved in this */ public int getNbRealVar() { return nbRealVar; } /** * Iterate over the variable of this and build an array that contains the {@link RealVar} only. * It also contains FIXED variables and VIEWS, if any. * * @return array of {@link RealVar} in this model */ public RealVar[] retrieveRealVars() { int size = getNbRealVar(); RealVar[] rvars = new RealVar[size]; int k = 0; for (int i = 0; i < vIdx; i++) { if ((vars[i].getTypeAndKind() & Variable.KIND) == Variable.REAL) { rvars[k++] = (RealVar) vars[i]; } } assert k == size; return rvars; } /** * Returns the array of Constraint objects posted in this Model. * * @return array of posted constraints */ public Constraint[] getCstrs() { return Arrays.copyOf(cstrs, cIdx); } /** * Return the number of constraints posted in this. * * @return number of posted constraints. */ public int getNbCstrs() { return cIdx; } /** * Return the name of this model. * * @return this model's name */ public String getName() { return name; } /** * Return the backtracking environment of this model. * * @return the backtracking environment of this model */ public IEnvironment getEnvironment() { return environment; } /** * Return the (possibly null) objective variable * * @return a variable (null for satisfaction problems) */ public Variable getObjective() { return objective; } /** * In case of real variable(s) to optimize, a precision is required. * * @return the precision used */ public double getPrecision() { return precision; } /** * Returns the object associated with the named hookName * * @param hookName the name of the hook to return * @return the object associated to the name hookName */ public Object getHook(String hookName) { return hooks.get(hookName); } /** * Returns the map containing declared hooks. * This map is mutable. * * @return the map of hooks. */ protected Map getHooks() { return hooks; } /** * Returns the unique constraint embedding a minisat model. * A call to this method will create and post the constraint if it does not exist already. * * @return the minisat constraint */ public SatConstraint getMinisat() { if (getHook(MINISAT_HOOK_NAME) == null) { SatConstraint minisat = new SatConstraint(this); minisat.post(); addHook(MINISAT_HOOK_NAME, minisat); } return (SatConstraint) getHook(MINISAT_HOOK_NAME); } /** * Unpost minisat constraint from model, if any. */ public void removeMinisat() { if (getHook(MINISAT_HOOK_NAME) != null) { SatConstraint minisat = (SatConstraint) getHook(MINISAT_HOOK_NAME); unpost(minisat); removeHook(MINISAT_HOOK_NAME); } } /** * Return a constraint embedding a nogood store (based on a sat model). * A call to this method will create and post the constraint if it does not exist already. * * @return the no good constraint */ public NogoodConstraint getNogoodStore() { if (getHook(NOGOODS_HOOK_NAME) == null) { NogoodConstraint nogoods = new NogoodConstraint(this); nogoods.post(); addHook(NOGOODS_HOOK_NAME, nogoods); } return (NogoodConstraint) getHook(NOGOODS_HOOK_NAME); } /** * Unpost nogood store constraint from model, if any. */ public void removeNogoodStore() { if (getHook(NOGOODS_HOOK_NAME) != null) { NogoodConstraint nogoods = (NogoodConstraint) getHook(NOGOODS_HOOK_NAME); unpost(nogoods); removeHook(NOGOODS_HOOK_NAME); } } /** * Return a constraint embedding a signed-clauses store. * A call to this method will create and post the constraint if it does not exist already. * * @return the signed-clauses store constraint */ public ClauseConstraint getClauseConstraint() { if (getHook(CLAUSES_HOOK_NAME) == null) { ClauseConstraint clauses = new ClauseConstraint(this); clauses.post(); addHook(CLAUSES_HOOK_NAME, clauses); } return (ClauseConstraint) getHook(CLAUSES_HOOK_NAME); } /** * @return an instance of {@link ClauseBuilder} that helps creating clause during resolution. */ public ClauseBuilder getClauseBuilder() { if (getHook(CLAUSESBUILDER_HOOK_NAME) == null) { ClauseBuilder builder = new ClauseBuilder(this); addHook(CLAUSESBUILDER_HOOK_NAME, builder); } return (ClauseBuilder) getHook(CLAUSESBUILDER_HOOK_NAME); } /** * Return a constraint embedding an instance of Ibex (continuous solver). * A call to this method will create and post the constraint if it does not exist already. * * @return the Ibex constraint */ public IbexHandler getIbexHandler() { if (getHook(IBEX_HOOK_NAME) == null) { IbexHandler ibexHnadler = new IbexHandler(); addHook(IBEX_HOOK_NAME, ibexHnadler); } return (IbexHandler) getHook(IBEX_HOOK_NAME); } /** * Return the current settings for the solver * * @return a {@link org.chocosolver.solver.Settings} */ public Settings getSettings() { return this.settings; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// SETTERS //////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Defines the variable to optimize (maximize or minimize) * By default, each solution forces either : *
    *
  • for {@link Model#MAXIMIZE}: to increase by one {@link IntVar} (or {@link #precision} for {@link RealVar}) the objective lower bound, or
  • *
  • for {@link Model#MINIMIZE}: to decrease by one {@link IntVar} (or {@link #precision} for {@link RealVar}) the objective upper bound.
  • *
* * @param maximize whether to maximize (true) or minimize (false) the objective * @param objective variable to optimize * @see IObjectiveManager#setStrictDynamicCut() * @see IObjectiveManager#setWalkingDynamicCut() * @see IObjectiveManager#setCutComputer(Function) */ @SuppressWarnings("unchecked") public void setObjective(boolean maximize, Variable objective) { if (objective == null) { throw new SolverException("Cannot set objective to null"); } else { this.policy = maximize ? ResolutionPolicy.MAXIMIZE : ResolutionPolicy.MINIMIZE; this.objective = objective; if ((objective.getTypeAndKind() & Variable.KIND) == Variable.REAL) { getSolver().setObjectiveManager( ObjectiveFactory.makeObjectiveManager((RealVar) objective, policy, precision) ); } else { getSolver().setObjectiveManager( ObjectiveFactory.makeObjectiveManager((IntVar) objective, policy) ); } } } /** * Removes any objective and set problem to a satisfaction problem */ public void clearObjective() { this.objective = null; this.policy = ResolutionPolicy.SATISFACTION; getSolver().setObjectiveManager(ObjectiveFactory.SAT()); } /** * In case of real variable to optimize, a precision is required. * * @param p the precision (default is 0.0001D) */ public void setPrecision(double p) { this.precision = p; } /** * Sets the seed used for random number generator using a single * {@code long} seed. * * @see java.util.Random#setSeed(long) * * @param seed the initial seed */ public void setSeed(long seed) { this.seed = seed; } /** * Gets the seed used random number generator. * @return the seed */ public long getSeed() { return this.seed; } /** * Adds the hookObject to store in this model, associated with the name hookName. * A hook is a simple map "hookName" <-> hookObject. * * @param hookName name of the hook * @param hookObject hook to store */ public void addHook(String hookName, Object hookObject) { this.hooks.put(hookName, hookObject); } /** * Removes the hook named hookName * * @param hookName name of the hookObject to remove */ public void removeHook(String hookName) { this.hooks.remove(hookName); } /** * Empties the hooks attached to this model. */ public void removeAllHooks() { this.hooks.clear(); } /** * Changes the name of this model to be equal to the argument name. * * @param name the new name of this model. */ public void setName(String name) { this.name = name; this.getSolver().getMeasures().setModelName(name); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// RELATED TO VAR //////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Link a variable to this. This is executed AUTOMATICALLY in variable constructor, * so no checked are done on multiple occurrences of the very same variable. * Should not be called by the user. * * @param variable a newly created variable, not already added */ public void associates(Variable variable) { if (vIdx == vars.length) { Variable[] tmp = vars; vars = new Variable[tmp.length * 2]; System.arraycopy(tmp, 0, vars, 0, vIdx); } vars[vIdx++] = variable; switch ((variable.getTypeAndKind() & Variable.KIND)) { case Variable.INT: nbIntVar++; break; case Variable.BOOL: nbBoolVar++; break; case Variable.SET: nbSetVar++; break; case Variable.REAL: nbRealVar++; break; } } /** * Unlink the variable from this. * Should not be called by the user. * * @param variable variable to un-associate */ public void unassociates(Variable variable) { if (variable.getNbProps() > 0) { throw new SolverException("Try to remove a variable (" + variable.getName() + ")which is still involved in at least one constraint"); } int idx = 0; for (; idx < vIdx; idx++) { if (variable == vars[idx]) break; } System.arraycopy(vars, idx + 1, vars, idx + 1 - 1, vIdx - (idx + 1)); vars[--vIdx] = null; switch ((variable.getTypeAndKind() & Variable.KIND)) { case Variable.INT: nbIntVar--; break; case Variable.BOOL: nbBoolVar--; break; case Variable.SET: nbSetVar--; break; case Variable.REAL: nbRealVar--; break; } } /** * Get a free single-use id to identify a new variable. * Should not be called by the user. * * @return a free id to use */ public int nextId() { return id++; } /** * Get a free single-use name id to identify a variable created internally. * Should not be called by the user. * * @return a free id to use */ public int nextNameId() { return nameId++; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////// RELATED TO CSTR DECLARATION //////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Posts constraints cs permanently in the constraints network of this: * - add them to the data structure, * - set the fixed idx, * - checks for restrictions * * @param cs Constraints * @throws SolverException if the constraint is posted twice, posted although reified or reified twice. */ public void post(Constraint... cs) throws SolverException { if(cs != null) { _post(true, cs); } } /** * Add constraints to the model. * * @param permanent specify whether the constraints are added permanently (if set to true) or temporary (ie, should be removed on backtrack) * @param cs list of constraints * @throws SolverException if a constraint is posted twice, posted although reified or reified twice. */ private void _post(boolean permanent, Constraint... cs) throws SolverException { PropagationEngine engine = getSolver().getEngine(); // check if the resolution already started -> if true, dynamic addition boolean dynAdd = engine.isInitialized(); // then prepare storage of the constraints if (cIdx + cs.length >= cstrs.length) { int nsize = cstrs.length; while (cIdx + cs.length >= nsize) { nsize *= 3 / 2 + 1; } Constraint[] tmp = cstrs; cstrs = new Constraint[nsize]; System.arraycopy(tmp, 0, cstrs, 0, cIdx); } // specific behavior for dynamic addition and/or reified constraints for (Constraint c : cs) { for (Propagator p : c.getPropagators()) { if(p.isPassive()){ throw new SolverException("Try to add a constraint with a passive propagator"); } p.getConstraint().checkNewStatus(Constraint.Status.POSTED); p.linkVariables(); } if (dynAdd) { engine.dynamicAddition(permanent, c.getPropagators()); } c.declareAs(Constraint.Status.POSTED, cIdx); cstrs[cIdx++] = c; } } /** * Posts constraints cs temporary, that is, they will be unposted upon backtrack. * * The unpost instruction is defined by an {@link org.chocosolver.memory.structure.IOperation} * saved in the {@link IEnvironment} * * @param cs a set of constraints to add * @throws ContradictionException if the addition of constraints cs detects inconsistency. * @throws SolverException if a constraint is posted twice, posted although reified or reified twice. */ public void postTemp(Constraint... cs) throws ContradictionException { if (cs != null) { for (Constraint c : cs) { this.getEnvironment().save(() -> unpost(c)); _post(false, c); if (!getSolver().getEngine().isInitialized()) { throw new SolverException("Try to post a temporary constraint while the resolution has not begun.\n" + "A call to Model.post(Constraint) is more appropriate."); } if (getSolver().getEngine().isInitialized()) { for (Propagator p : c.getPropagators()) { getSolver().getEngine().execute(p); } } } } } /** * Remove permanently the constraint c from the constraint network. * * @param constraints the constraints to remove * @throws SolverException if a constraint is unknown from the model */ public void unpost(Constraint... constraints) throws SolverException { if (constraints != null) { for (Constraint c : constraints) { // 1. look for the constraint c int idx = c.getCidxInModel(); c.declareAs(Constraint.Status.FREE, -1); c.ignore(); // 2. remove it from the network Constraint cm = cstrs[--cIdx]; if (idx < cIdx) { cstrs[idx] = cm; cstrs[idx].declareAs(Constraint.Status.FREE, -1); // needed, to avoid throwing an exception cstrs[idx].declareAs(Constraint.Status.POSTED, idx); } cstrs[cIdx] = null; // 3. check if the resolution already started -> if true, dynamic deletion PropagationEngine engine = getSolver().getEngine(); if (engine.isInitialized()) { engine.dynamicDeletion(c.getPropagators()); } // 4. remove the propagators of the constraint from its variables for (Propagator prop : c.getPropagators()) { prop.unlinkVariables(); } } } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// RELATED TO I/O //////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Return a string describing the CSP defined in this model. */ @Override public String toString() { StringBuilder st = new StringBuilder(256); st.append(String.format("\n Model[%s]\n", name)); st.append(String.format("\n[ %d vars -- %d cstrs ]\n", vIdx, cIdx)); st.append(policy.name().toLowerCase()).append(" "); if (objective != null) { st.append(objective.getName()).append(" "); } st.append(" : ").append(getSolver().isFeasible().name().toLowerCase()).append("\n"); st.append("== variables ==\n"); for (int v = 0; v < vIdx; v++) { st.append(vars[v].toString()).append('\n'); } st.append("== constraints ==\n"); for (int c = 0; c < cIdx; c++) { st.append(cstrs[c].toString()).append('\n'); } return st.toString(); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// RELATED TO MODELING FACTORIES ///////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// @Override public Model ref() { return this; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy