All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.constraints.IDecompositionFactory Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2020, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.solver.constraints;

import gnu.trove.iterator.TIntIterator;
import gnu.trove.set.hash.TIntHashSet;
import org.chocosolver.solver.ISelf;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.constraints.extension.Tuples;
import org.chocosolver.solver.constraints.nary.automata.FA.IAutomaton;
import org.chocosolver.solver.variables.BoolVar;
import org.chocosolver.solver.variables.IntVar;

import java.util.Arrays;
import java.util.stream.IntStream;
import java.util.stream.Stream;

import static java.lang.Integer.MAX_VALUE;
import static java.lang.Integer.MIN_VALUE;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.String.format;

/**
 * An interface dedicated to list decomposition of some constraints.
 * 

* Project: choco-solver. * * @author Charles Prud'homme * @since 12/06/2018. */ public interface IDecompositionFactory extends ISelf { /** * Creates and posts a decomposition of a cumulative constraint: associates a boolean * variable to each task and each point of time sich that the scalar product of boolean * variables per heights for each time never exceed capacity. * * @param starts starting time of each task * @param durations processing time of each task * @param heights resource consumption of each task * @param capacity resource capacity * @see org.chocosolver.solver.constraints.IIntConstraintFactory#cumulative(IntVar[], int[], * int[], int) */ default void cumulativeTimeDec(IntVar[] starts, int[] durations, int[] heights, int capacity) { int n = starts.length; // 1. find range of 't' parameters while creating variables int min_t = MAX_VALUE, max_t = MIN_VALUE; for (int i = 0; i < n; i++) { min_t = min(min_t, starts[i].getLB()); max_t = max(max_t, starts[i].getUB() + durations[i]); } for (int t = min_t; t <= max_t; t++) { BoolVar[] bit = ref().boolVarArray(format("b_%s_", t), n); for (int i = 0; i < n; i++) { ref().addClausesBoolAndArrayEqVar( new BoolVar[]{ ref().intLeView(starts[i], t), ref().intGeView(starts[i], t - durations[i] + 1) }, bit[i]); } ref().scalar( bit, Arrays.stream(heights, 0, n).toArray(), "<=", capacity ).post(); } } /** * Creates an element constraint: value = matrix[rowIndex-offset][colIndex-colOffset] * * @param value an integer variable taking its value in matrix * @param matrix a matrix of integer values * @param rowIndex index of the selected row * @param rowOffset offset for row index * @param colIndex index of the selected column * @param colOffset offset for column index */ default IntVar[] element(IntVar value, int[][] matrix, IntVar rowIndex, int rowOffset, IntVar colIndex, int colOffset) { IntVar[] results = new IntVar[matrix.length]; for (int r = 0; r < matrix.length; r++) { int min = IntStream.of(matrix[r]).min().orElse(IntVar.MIN_INT_BOUND); int max = IntStream.of(matrix[r]).max().orElse(IntVar.MAX_INT_BOUND); results[r] = ref().intVar("val["+r+"]", min, max); ref().element(results[r], matrix[r], colIndex, colOffset).post(); } ref().element(value, results, rowIndex, rowOffset).post(); return results; } /** * Creates an element constraint: value = matrix[rowIndex-offset][colIndex-colOffset] * * @param value an integer variable taking its value in matrix * @param matrix a matrix of integer variables * @param rowIndex index of the selected row * @param rowOffset offset for row index * @param colIndex index of the selected column * @param colOffset offset for column index */ default IntVar[] element(IntVar value, IntVar[][] matrix, IntVar rowIndex, int rowOffset, IntVar colIndex, int colOffset) { IntVar[] results = new IntVar[matrix.length]; for (int r = 0; r < matrix.length; r++) { int min = Stream.of(matrix[r]).mapToInt(IntVar::getLB).min().orElse(IntVar.MIN_INT_BOUND); int max = Stream.of(matrix[r]).mapToInt(IntVar::getUB).max().orElse(IntVar.MAX_INT_BOUND); results[r] = ref().intVar("val[" + r + "]", min, max); ref().element(results[r], matrix[r], colIndex, colOffset).post(); } ref().element(value, results, rowIndex, rowOffset).post(); return results; } /** * Creates and posts a decomposition of a regular constraint. * Enforces the sequence of vars to be a word * recognized by the deterministic finite automaton. * For example regexp = "(1|2)(3*)(4|5)"; * The same dfa can be used for different propagators. * * @param vars sequence of variables * @param automaton a deterministic finite automaton defining the regular language * @return array of variables that encodes the states, which can optionally be constrained too. */ default IntVar[] regularDec(IntVar[] vars, IAutomaton automaton) { int n = vars.length; IntVar[] states = new IntVar[n + 1]; TIntHashSet[] layer = new TIntHashSet[n + 1]; for (int i = 0; i <= n; i++) { layer[i] = new TIntHashSet(); } layer[0].add(automaton.getInitialState()); states[0] = ref().intVar("Q_"+ref().nextId(), layer[0].toArray()); TIntHashSet nexts = new TIntHashSet(); for (int i = 0; i < n; i++) { int ub = vars[i].getUB(); Tuples tuples = new Tuples(true); for (int j = vars[i].getLB(); j <= ub; j = vars[i].nextValue(j)) { TIntIterator layerIter = layer[i].iterator(); while (layerIter.hasNext()) { int k = layerIter.next(); nexts.clear(); automaton.delta(k, j, nexts); for (TIntIterator it = nexts.iterator(); it.hasNext(); ) { int succ = it.next(); if (i + 1 < n || automaton.isFinal(succ)) { layer[i + 1].add(succ); tuples.add(k, succ, j); } } } } states[i + 1] = ref().intVar("Q_" + +ref().nextId(), layer[i + 1].toArray()); ref().table(new IntVar[]{states[i], states[i + 1], vars[i]}, tuples, "CT+").post(); } return states; } /** * Creates and posts a decomposition of a bin packing constraint. Bin Packing * formulation: forall b in [0,binLoad.length-1], load[b]=sum(w[i] | i in [0,w.length-1], bin[i] * = b+offset) forall i in [0,w.length-1], bin is in [offset,load.length-1+offset], * * @param bin IntVar representing the bin of each item * @param w int representing the size of each item * @param load IntVar representing the load of each bin (i.e. the sum of the size of the items * in it) * @param offset 0 by default but typically 1 if used within MiniZinc (which counts from 1 to n * instead of from 0 to n-1) */ default void binPackingDec(IntVar[] bin, int[] w, IntVar[] load, int offset) { ref().sum(load, "=", Arrays.stream(w).sum()).post(); for (int i = 0; i < bin.length; i++) { ref().member(bin[i], offset, load.length - 1 + offset).post(); } for (int i = 0; i < load.length; i++) { BoolVar[] in = new BoolVar[bin.length]; for (int j = 0; j < bin.length; j++) { in[j] = ref().intEqView(bin[j], i + offset); } ref().scalar(in, w, "=", load[i]).post(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy