org.chocosolver.solver.search.IResolutionHelper Maven / Gradle / Ivy
Show all versions of choco-solver Show documentation
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2022, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.solver.search;
import org.chocosolver.solver.ISelf;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solution;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.constraints.Constraint;
import org.chocosolver.solver.constraints.Propagator;
import org.chocosolver.solver.constraints.UpdatablePropagator;
import org.chocosolver.solver.constraints.extension.Tuples;
import org.chocosolver.solver.constraints.extension.TuplesFactory;
import org.chocosolver.solver.constraints.nary.lex.PropLexInt;
import org.chocosolver.solver.constraints.unary.Member;
import org.chocosolver.solver.constraints.unary.NotMember;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.exception.SolverException;
import org.chocosolver.solver.objective.ParetoMaximizer;
import org.chocosolver.solver.search.limits.ACounter;
import org.chocosolver.solver.search.limits.SolutionCounter;
import org.chocosolver.solver.search.measure.IMeasures;
import org.chocosolver.solver.search.strategy.Search;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.util.ESat;
import org.chocosolver.util.criteria.Criterion;
import org.chocosolver.util.objects.setDataStructures.iterable.IntIterableRangeSet;
import org.chocosolver.util.tools.ArrayUtils;
import java.util.*;
import java.util.function.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
/**
* Interface to define most commonly used resolution procedures.
*
* Project: choco-solver.
*
* @author Jean-Guillaum Fages
* @author Charles Prud'homme
* @author Guillaume Lelouet
* @author Dimitri Justeau-Allaire ([email protected])
* @since 25/04/2016.
*/
public interface IResolutionHelper extends ISelf {
/**
* Attempts to find a solution of the declared satisfaction problem.
*
* - If the method returns null:
*
* - either a stop criterion (e.g., a time limit) stops the search before a solution has been found,
* - or no solution exists for the problem (i.e., over-constrained).
*
* - if the method returns a {@link Solution}:
*
* - a solution has been found. This method can be called anew to look for the next solution, if any.
*
*
*
* If a solution has been found, since the search process stops on that solution, variables' value can be read, e.g.,
* {@code intvar.getValue()} or the solution can be recorded:
*
*
* {@code
* Solution s = new Solution(model);
* s.record();
* }
*
*
* Basically, this method runs the following instructions:
*
*
* {@code
* if(ref().solve()) {
* return new Solution(ref()).record();
* }else{
* return null;
* }
* }
*
*
* Note that all variables will be recorded
*
* Note that it clears the current objective function, if any
*
* @param stop optional criterion to stop the search before finding a solution
* @return a {@link Solution} if and only if a solution has been found, null otherwise.
*/
default Solution findSolution(Criterion... stop) {
ref().getModel().clearObjective();
ref().addStopCriterion(stop);
boolean found = ref().solve();
ref().removeStopCriterion(stop);
if (found) {
return new Solution(ref().getModel()).record();
} else {
return null;
}
}
/**
* Attempts to find all solutions of the declared satisfaction problem.
*
* - If the method returns an empty list:
*
* -
* either a stop criterion (e.g., a time limit) stops the search before any solution has been found,
*
* -
* or no solution exists for the problem (i.e., over-constrained).
*
*
* - if the method returns a list with at least one element in it:
*
* - either the resolution stops eagerly du to a stop criterion before finding all solutions,
* - or all solutions have been found.
*
*
*
* This method run the following instructions:
*
* {@code
* List solutions = new ArrayList<>();
* while (model.getSolver().solve()){
* solutions.add(new Solution(model).record());
* }
* return solutions;
* }
*
*
* Note that all variables will be recorded
*
* Note that it clears the current objective function, if any
*
* @param stop optional criterion to stop the search before finding all solutions
* @return a list that contained the found solutions.
*/
default List findAllSolutions(Criterion... stop) {
ref().getModel().clearObjective();
ref().addStopCriterion(stop);
List solutions = new ArrayList<>();
while (ref().solve()) {
solutions.add(new Solution(ref().getModel()).record());
}
ref().removeStopCriterion(stop);
return solutions;
}
/**
* Attempts to find all solutions of the declared problem.
*
* - If the method returns an empty list:
*
* - either a stop criterion (e.g., a time limit) stops the search before any solution has been found,
* - or no solution exists for the problem (i.e., over-constrained).
*
* - if the method returns a list with at least one element in it:
*
* - either the resolution stops eagerly du to a stop criterion before finding all solutions,
* - or all solutions have been found.
*
*
*
* Basically, this method runs the following instructions:
*
*
* {@code
* List solutions = new ArrayList<>();
* while (model.getSolver().solve()) {
* solutions.add(new Solution(model).record());
* }
* return solutions;
* }
*
*
* Note that all variables will be recorded
*
* @param stop optional criterion to stop the search before finding all/best solution
* @return a list that contained the found solutions.
*/
default Stream streamSolutions(Criterion... stop) {
ref().addStopCriterion(stop);
/*CPRU cannot infer type arguments for java.util.Spliterator*/
Spliterator it = new Spliterator() {
@Override
public boolean tryAdvance(Consumer super Solution> action) {
if (ref().solve()) {
action.accept(new Solution(ref().getModel()).record());
return true;
}
ref().removeStopCriterion(stop);
return false;
}
@Override
public Spliterator trySplit() {
return null;
}
@Override
public long estimateSize() {
return Long.MAX_VALUE;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.NONNULL | Spliterator.CONCURRENT;
}
};
return StreamSupport.stream(it, false);
}
/**
* Attempt to find the solution that optimizes the mono-objective problem defined by a unique objective variable and
* an optimization criteria.
*
* - If this method returns null:
*
* - either the resolution stops eagerly du to a stop criterion (e.g., a time limit) and no solution has been found
* so far,
* - or the problem cannot be satisfied (i.e., over constrained).
*
* - If this method returns a {@link Solution}:
*
* - either the resolution stops eagerly du to a stop criterion and the solution is the best found so far but not
* necessarily the optimal one,
* - or it is the optimal one.
*
*
*
* Basically, this method runs the following instructions:
*
*
* {@code
* model.setObjective(maximize, objective);
* Solution s = new Solution(model);
* while (model.getSolver().solve()) {
* s.record();
* }
* return model.getSolver().isFeasible() == ESat.TRUE ? s : null;
* }
*
*
* Note that all variables will be recorded
*
* @param objective integer variable to optimize
* @param maximize set to true to solve a maximization problem, set to false to solve a minimization
* problem.
* @param stop optional criterion to stop the search before finding all/best solution
* @return
* - null if the problem has no solution or a stop criterion stops the search before finding a
* first solution
* - a {@link Solution} if at least one solution has been found. The solution is proven to be optimal if no
* stop criterion stops the search.
*
*/
default Solution findOptimalSolution(IntVar objective, boolean maximize, Criterion... stop) {
ref().getModel().setObjective(maximize, objective);
ref().addStopCriterion(stop);
Solution s = new Solution(ref().getModel());
while (ref().solve()) {
s.record();
}
ref().removeStopCriterion(stop);
return ref().isFeasible() == ESat.TRUE ? s : null;
}
/**
* Attempt to find the solution that optimizes the mono-objective problem defined by
* a unique objective variable and an optimization criteria, then finds and stores all optimal solution.
* Searching for all optimal solutions is only triggered if the first search is complete.
* This method works as follow:
*
* - It finds and prove the optimum
* - It resets the search and enumerates all solutions of optimal cost
*
* Note that the returned list can be empty.
*
* - If the method returns an empty list:
*
* -
* either a stop criterion (e.g., a time limit) stops the search before any solution has been found,
*
* -
* or no solution exists for the problem (i.e., over-constrained).
*
*
* - if the method returns a list with at least one element in it:
*
* - either the resolution stops eagerly du to a stop criterion before finding all solutions,
* - or all optimal solutions have been found.
*
*
*
* This method runs the following instructions:
*
* {@code
* ref().findOptimalSolution(objective, maximize, stop);
* if (!ref().isStopCriterionMet() &&
* model.getSolver().getMeasures().getSolutionCount() > 0) {
* int opt = _model.getSolver().getObjectiveManager().getBestSolutionValue().intValue();
* model.getSolver().reset();
* model.clearObjective();
* model.arithm(objective, "=", opt).post();
* return findAllSolutions();
* } else {
* return Collections.emptyList();
* }
* }
*
*
* Note that all variables will be recorded
*
* @param objective the variable to optimize
* @param maximize set to true to solve a maximization problem,
* set to false to solve a minimization problem.
* @param stop optional criterion to stop the search before finding all/best solution
* @return a list that contained the solutions found.
*/
default List findAllOptimalSolutions(IntVar objective, boolean maximize, Criterion... stop) {
ref().addStopCriterion(stop);
boolean defaultS = ref().getSearch() == null;// best bound (in default) is only for optim
ref().findOptimalSolution(objective, maximize);
if (!ref().isStopCriterionMet()
&& ref().getSolutionCount() > 0) {
ref().removeStopCriterion(stop);
int opt = ref().getObjectiveManager().getBestSolutionValue().intValue();
ref().reset();
ref().getModel().clearObjective();
Constraint forceOptimal = ref().getModel().arithm(objective, "=", opt);
forceOptimal.post();
if (defaultS)
ref().setSearch(Search.defaultSearch(ref().getModel()));// best bound (in default) is only for optim
List solutions = findAllSolutions(stop);
ref().getModel().unpost(forceOptimal);
return solutions;
} else {
ref().removeStopCriterion(stop);
return Collections.emptyList();
}
}
/**
* Attempt to find the solution that optimizes the mono-objective problem defined by a unique objective variable and
* an optimization criteria, then finds and stores all optimal solution. This method works as follow:
*
* - It finds and prove the optimum
* - It resets the search and enumerates all solutions of optimal cost
*
* Note that the returned list can be empty.
*
* - If the method returns an empty list:
*
* - either a stop criterion (e.g., a time limit) stops the search before any solution has been found,
* - or no solution exists for the problem (i.e., over-constrained).
*
* - if the method returns a list with at least one element in it:
*
* - either the resolution stops eagerly du to a stop criterion before finding all solutions,
* - or all optimal solutions have been found.
*
*
*
* Basically, this method runs the following instructions:
*
*
* {@code
* ref().findOptimalSolution(objective, maximize);
* if (model.getSolver().getMeasures().getSolutionCount() > 0) {
* int opt = _model.getSolver().getObjectiveManager().getBestSolutionValue().intValue();
* model.getSolver().reset();
* model.clearObjective();
* model.arithm(objective, "=", opt).post();
* return findAllSolutions();
* } else {
* return Collections.emptyList();
* }
* }
*
*
* Note that all variables will be recorded
*
* @param objective the variable to optimize
* @param maximize set to true to solve a maximization problem, set to false to solve a minimization
* problem.
* @param stop optional criterion to stop the search before finding all/best solution
* @return a list that contained the solutions found.
*/
default Stream streamOptimalSolutions(IntVar objective, boolean maximize, Criterion... stop) {
ref().addStopCriterion(stop);
boolean defaultS = ref().getSearch() == null;// best bound (in default) is only for optim
ref().findOptimalSolution(objective, maximize);
if (!ref().isStopCriterionMet()
&& ref().getSolutionCount() > 0) {
ref().removeStopCriterion(stop);
int opt = ref().getObjectiveManager().getBestSolutionValue().intValue();
ref().reset();
ref().getModel().clearObjective();
Constraint forceOptimal = ref().getModel().arithm(objective, "=", opt);
forceOptimal.post();
ref().getModel().getEnvironment().save(() -> ref().getModel().unpost(forceOptimal));
if (defaultS)
ref().setSearch(Search.defaultSearch(ref().getModel()));// best bound (in default) is only for optim
/*CPRU cannot infer type arguments for java.util.Spliterator*/
Spliterator it = new Spliterator() {
@Override
public boolean tryAdvance(Consumer super Solution> action) {
if (ref().solve()) {
action.accept(new Solution(ref().getModel()).record());
return true;
}
ref().getModel().unpost(forceOptimal);
ref().removeStopCriterion(stop);
return false;
}
@Override
public Spliterator trySplit() {
return null;
}
@Override
public long estimateSize() {
return Long.MAX_VALUE;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.NONNULL | Spliterator.CONCURRENT;
}
};
return StreamSupport.stream(it, false);
} else {
ref().removeStopCriterion(stop);
return Stream.empty();
}
}
/**
* Attempts optimize the value of the objectives variable w.r.t. to an optimization criteria. Finds and stores
* all optimal solution. Note that the returned list can be empty.
*
* - If the method returns an empty list:
*
* - either a stop criterion (e.g., a time limit) stops the search before any solution has been found,
* - or no solution exists for the problem (i.e., over-constrained).
*
* - if the method returns a list with at least one element in it:
*
* - either the resolution stops eagerly du to a stop criterion before finding all solutions,
* - or all optimal solutions have been found.
*
*
* Basically, this method runs the following instructions:
*
*
* {@code
* ParetoMaximizer pareto = new ParetoMaximizer(maximize, objectives);
* while (ref().solve()) {
* pareto.onSolution();
* }
* return pareto.getParetoFront();
* }
*
*
* Note that all variables will be recorded
*
* @param objectives the array of variables to optimize
* @param maximize set to true to solve a maximization problem, set to false to solve a minimization
* problem.
* @param stop optional criteria to stop the search before finding all/best solution
* @return a list that contained the solutions found.
*/
default List findParetoFront(IntVar[] objectives, boolean maximize, Criterion... stop) {
ref().addStopCriterion(stop);
ParetoMaximizer pareto = new ParetoMaximizer(
Stream.of(objectives).map(o -> maximize ? o : ref().getModel().intMinusView(o)).toArray(IntVar[]::new)
);
Constraint c = new Constraint("PARETO", pareto);
c.post();
while (ref().solve()) {
pareto.onSolution();
}
ref().removeStopCriterion(stop);
ref().getModel().unpost(c);
return pareto.getParetoFront();
}
/**
* Attempts optimize the value of the objectives variable w.r.t. to an optimization criteria.
* Finds and stores the optimal solution, if any.
* Moreover, the objective variables are ordered wrt their significance.
* The first objective variable is more significant or equally significant to the second one,
* which in turn is more significant or equally significant to the third one, etc.
* On an optimal solution of a maximization problem, the first variable is maximized, then the second one is maximized, etc.
*
* Note that if a stop criteria stops the search eagerly, no optimal solution may have been found.
* In that case, the best solution, if at least one has been found, is returned.
*
* Note that all variables will be recorded
*
* @param objectives the list of objectives to find the optimal. A solution o1..on is optimal if lexicographically better than
* any other correct solution s1..sn
* @param maximize to maximize the objective, false to minimize.
* @param stop stop criterion are added before search and removed after search.
* @return A solution with the optimal objectives value, null if no solution exists or search was stopped before a
* solution could be found. If null, check if a criterion was met to find out was caused the null.
*/
default Solution findLexOptimalSolution(IntVar[] objectives, boolean maximize, Criterion... stop) {
if (objectives == null || objectives.length == 0) {
return findSolution(stop);
}
ref().addStopCriterion(stop);
Solution sol = null;
Constraint clint = null;
UpdatablePropagator plint = null;
// 1. copy objective variables and transform it if necessary
IntVar[] mobj = new IntVar[objectives.length];
for (int i = 0; i < objectives.length; i++) {
mobj[i] = maximize ? ref().getModel().intMinusView(objectives[i]) : objectives[i];
}
// 2. try to find a first solution
while (ref().solve()) {
if (sol == null) {
sol = new Solution(ref().getModel());
}
sol.record();
// 3. extract values of each objective
int[] bestFound = new int[objectives.length];
for (int vIdx = 0; vIdx < objectives.length; vIdx++) {
bestFound[vIdx] = sol.getIntVal(objectives[vIdx]) * (maximize ? -1 : 1);
}
// 4. either update the constraint, or declare it if first solution
if (plint != null) {
plint.update(bestFound, true);
} else {
plint = new PropLexInt(mobj, bestFound, true, true);
clint = new Constraint("lex objectives", (Propagator) plint);
clint.post();
}
}
if (clint != null) {
ref().getModel().unpost(clint);
}
ref().removeStopCriterion(stop);
return sol;
}
/**
* Calling this method attempts to solve an optimization problem with the following strategy:
*
* - Phase 1: As long as solutions are found,
* it imposes that {@code bounded} is bounded is member of {@code bounder}
* - Phase 2:When no solution can be found or {@code limitPerAttempt} is reached:
*
* - the objective best value is recorded
* - {@code bounded} is bounded out of last bounds provided by {@code bounder}
* - last bounds provided by {@code bounder} are then relaxed using {@code boundsRelaxer}
* - the search is then reset (calling {@link Solver#reset()}
* - if {@code stopCriterion} returns {@code false}, go back to Phase 1
*
* - Reset the search (calling {@link Solver#reset()}
* - Update the objective variable with the best value found so far and quit.
*
*
*
* Note that it is required that {@code bounded} is the objective variable.
*
* The call to {@link Solver#reset()} removes any limits declared,
* that is why {@code limitPerAttempt} can be needed. It will be re-declared upon any attempt.
*
*
* To make sure the solving loop ends, it is possible to declare a {@code stopCriterion} which gives as
* parameter the current number of attempts done so far.
*
* {@code onSolution} makes possible to do something on a solution, for instance recording it.
*
* Example of usage:
*
*
{@code
* Solution solution = new Solution(model);
* model.getSolver().findOptimalSolutionWithBounds(
* minLoad,
* () -> new int[]{minLoad.getValue() * 2, 1000},
* (i, b) -> i, // always restart from initial bounds
* () -> model.getSolver().getNodeCount() > 10_000, // 10_000 nodes per attempt
* r -> r > 1 && model.getSolver().getNodeCount() == 0, // run at least twice then stop on trivial unsatisfaction
* solution::record // record solutions
* )}
*
*
* This strategy should be used when it is easy to find a solution, but quite hard to the optimal solution.
* Using this strategy with a sharp but accurate bounder strategy is expected to reduce drastically the search space
* at the expense of the completeness of the exploration.
* Indeed, a too optimistic bound may result in a dead-end, that's why a relaxation is applied,
* to allow completeness back even if it is not required.
*
*
* Since {@link Solver#reset()} is called, limits might not be respected, that's why a
* function {@code stopCriterion} parametrized with the number of attempts is needed.
*
*
* @param bounded the variable to bound, may be different from the declared objective variable
* @param bounder the value to bound the variable with
* @param boundsRelaxer relaxation function, take init bounds and last bounds found as parameters and return relaxed bounds
* @param stopCriterion function that {@code true} when conditions are met to stop this strategy.
* @param onSolution instruction to execute when a solution is found (for instance, solution recording)
* @return {@code true} if at least one solution has been found, {@code false} otherwise.
* @implNote If the given problem is a satisfaction problem, calling this method will do nothing and return false.
*/
@SuppressWarnings({"unchecked"})
default boolean findOptimalSolutionWithBounds(IntVar bounded,
Supplier bounder,
BiFunction boundsRelaxer,
Criterion limitPerAttempt,
IntPredicate stopCriterion,
Runnable onSolution) {
if (!ref().getObjectiveManager().isOptimization()) return false;
// Record initial bounds
int[] initBounds = new int[]{bounded.getLB(), bounded.getUB()};
// Prepare the cut
IntIterableRangeSet interval = new IntIterableRangeSet(initBounds[0], initBounds[1]);
Member cut = new Member(bounded, interval);
UpdatablePropagator prop =
(UpdatablePropagator) cut.getPropagator(0);
// Prepare opposite cut
IntIterableRangeSet oppinterval = interval.duplicate();
oppinterval.flip(initBounds[0] - 1, initBounds[1] + 1);
NotMember oppcut = new NotMember(bounded, oppinterval);
UpdatablePropagator oppprop =
(UpdatablePropagator) oppcut.getPropagator(0);
cut.post();
oppcut.post();
boolean found = false;
int objective;
int[] bounds = initBounds;
int run = 0;
do {
run++;
// set the limit, which will be deleted on reset()
ref().limitSearch(limitPerAttempt);
while (ref().solve()) {
bounds = bounder.get();
interval.retainBetween(bounds[0], bounds[1]);
prop.update(interval, true);
onSolution.run();
found = true;
}
objective = ref().getObjectiveManager().getBestSolutionValue().intValue();
oppinterval.addAll(interval);
oppprop.update(oppinterval, false);
ref().reset();
ref().getObjectiveManager().updateBestSolution(objective);
bounds = boundsRelaxer.apply(initBounds, bounds);
interval.clear();
interval.addBetween(bounds[0], bounds[1]);
prop.update(interval, false);
} while (!stopCriterion.test(run));
ref().reset();
ref().getModel().unpost(cut);
ref().getModel().unpost(oppcut);
ref().getObjectiveManager().updateBestSolution(objective);
return found;
}
/**
* Explore the model, calling a {@link BiConsumer} for each {@link Solution} with its corresponding {@link IMeasures}.
*
* The {@link Solution} and the {@link IMeasures} provided by the Biconsumer are always the same reference, consider
* either extracting values from them or copy them. See {@link IMeasures} and {@link Solution#copySolution()}
*
*
* The consumer and the criterion should not be linked ; instead use {@link ACounter} sub-classes.
*
*
* Note that all variables will be recorded
*
* @param cons the consumer of solution and measure couples
* @param stop optional criterions to stop the search before finding all/best solution
*/
default void eachSolutionWithMeasure(BiConsumer cons, Criterion... stop) {
ref().addStopCriterion(stop);
Solution s = new Solution(ref().getModel());
while (ref().solve()) {
cons.accept(s.record(), ref().getMeasures());
}
ref().removeStopCriterion(stop);
}
/**
*
* The sampling algorithm works in the following manner: table constraints are added to the problem to reduce the number of solutions.
* When there are less solutions than a given pivot value, a solution is randomly returned among the remaining solutions.
*
*
* Each table constraint is posted on randomly selected nbVariablesInTableprobaTuple to add a tuple in the table.
*
*
* This methods returns an infinite stream of randomly selected solutions.
* One should use {@code .limit(n)} to prevent infinite loop.
*
*
* @param pivot the pivot value
* @param nbVariablesInTable number of variables in tables constraints
* @param probaTuple probability to add a tuple in each table
* @param random an instance of pseudorandom numbers streamer
* @param criterion optional criterion to stop the searches early
* @return a, infinite stream of randomly selected solutions
* @implNote Even if there are no strict controls, this method is designed to sample on satisfaction problems.
* @implSpec Based on "Solution Sampling with Random Table Constraints".
* M. Vavrille, C. Truchet, C. Prud'homme: CP 2021
*/
default Stream tableSampling(int pivot, int nbVariablesInTable, double probaTuple, final Random random,
Criterion... criterion) {
final Model model = ref().getModel();
final Solver solver = ref();
final List solutions = solver.findAllSolutions(
ArrayUtils.append(criterion, new Criterion[]{new SolutionCounter(model, pivot)}));
if (solver.getSearchState() == SearchState.STOPPED && solutions.size() < pivot) // Timeout
return Stream.empty();
final List added = new LinkedList<>();
final HashSet selectedVariables = new HashSet<>();
/*CPRU cannot infer type arguments for java.util.Spliterator*/
Spliterator it = new Spliterator() {
@Override
public boolean tryAdvance(Consumer super Solution> action) {
solutions.clear(); // to force entering the loop in general case
added.clear();
while (solutions.size() == 0 || solutions.size() == pivot) {
solver.reset();
model.getEnvironment().worldPush(); // required to make sure initial propagation can be undone
try {
solver.propagate();
} catch (ContradictionException e) {
throw new SolverException("If there is an error here, it means that the previous tables were not consistent, " +
"and thus should not have been added\n" +
e.getMessage());
}
// Add new table
final List vars = Arrays.asList(model.retrieveIntVars(true));
// Get all uninstantiated variables
List uninstantiatedVars = vars.stream()
.filter(v -> !v.isInstantiated())
.collect(Collectors.toList());
// if there are no more uninstantiated variables, then do not return anything
if (uninstantiatedVars.size() == 0)
continue;
// Pick randomly at most 'nbVariablesInTable' variables
selectedVariables.clear();
int m = Math.min(nbVariablesInTable, uninstantiatedVars.size());
while (selectedVariables.size() < m) {
selectedVariables.add(uninstantiatedVars.get(random.nextInt(uninstantiatedVars.size())));
}
IntVar[] chosenVars = selectedVariables.toArray(new IntVar[0]);
Tuples tuples = TuplesFactory.randomTuples(probaTuple, random, chosenVars);
model.getEnvironment().worldPop(); // undo initial propagation
solver.getEngine().reset(); // prepare the addition of the new constraint
Constraint currentConstraint = model.table(chosenVars, tuples);
currentConstraint.post();
// Solve
solutions.clear();
solutions.addAll(solver.findAllSolutions(ArrayUtils.append(criterion, new Criterion[]{new SolutionCounter(model, pivot)})));
if (solver.getSearchState() == SearchState.STOPPED && solutions.size() < pivot) { // Timeout
model.unpost(currentConstraint);
for (Constraint c : added) {
model.unpost(c);
}
return false;
}
if (solutions.size() == 0) {
model.unpost(currentConstraint);
} else {
added.add(currentConstraint);
}
}
action.accept(solutions.get(random.nextInt(solutions.size())));
for (Constraint c : added) {
model.unpost(c);
}
return true;
}
@Override
public Spliterator trySplit() {
return null;
}
@Override
public long estimateSize() {
return Long.MAX_VALUE;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.NONNULL | Spliterator.CONCURRENT;
}
};
return StreamSupport.stream(it, false);
}
}