
org.chocosolver.examples.integer.GolombRuler Maven / Gradle / Ivy
/*
* This file is part of examples, http://choco-solver.org/
*
* Copyright (c) 2023, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.examples.integer;
import org.chocosolver.examples.AbstractProblem;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.variables.IntVar;
import org.kohsuke.args4j.Option;
import static java.lang.System.out;
import static org.chocosolver.solver.search.strategy.Search.inputOrderLBSearch;
/**
* CSPLib prob006:
* A Golomb ruler may be defined as a set of m integers 0 = a_1 < a_2 < ... < a_m such that
* the m(m-1)/2 differences a_j - a_i, 1 <= i < j <= m are distinct.
* Such a ruler is said to contain m marks and is of length a_m.
*
* The objective is to find optimal (minimum length) or near optimal rulers.
*
*
* @author Charles Prud'homme
* @since 31/03/11
*/
public class GolombRuler extends AbstractProblem {
@SuppressWarnings("FieldMayBeFinal")
@Option(name = "-m", usage = "Golomb ruler order.", required = false)
private int m = 10;
IntVar[] ticks;
IntVar[] diffs;
IntVar[][] m_diffs;
@Override
public void buildModel() {
model = new Model("GolombRuler");
ticks = model.intVarArray("a", m, 0, (m < 31) ? (1 << (m + 1)) - 1 : 9999, false);
model.arithm(ticks[0], "=", 0).post();
for (int i = 0; i < m - 1; i++) {
model.arithm(ticks[i + 1], ">", ticks[i]).post();
}
diffs = model.intVarArray("d", (m * m - m) / 2, 0, (m < 31) ? (1 << (m + 1)) - 1 : 9999, false);
m_diffs = new IntVar[m][m];
for (int k = 0, i = 0; i < m - 1; i++) {
for (int j = i + 1; j < m; j++, k++) {
// d[k] is m[j]-m[i] and must be at least sum of first j-i integers
// it is worth adding a constraint instead of a view
model.scalar(new IntVar[]{ticks[j], ticks[i]}, new int[]{1, -1}, "=", diffs[k]).post();
model.arithm(diffs[k], ">=", (j - i) * (j - i + 1) / 2).post();
model.arithm(diffs[k], "-", ticks[m - 1], "<=", -((m - 1 - j + i) * (m - j + i)) / 2).post();
model.arithm(diffs[k], "<=", ticks[m - 1], "-", ((m - 1 - j + i) * (m - j + i)) / 2).post();
m_diffs[i][j] = diffs[k];
}
}
model.allDifferent(diffs, "BC").post();
// break symetries
if (m > 2) {
model.arithm(diffs[0], "<", diffs[diffs.length - 1]).post();
}
}
@Override
public void configureSearch() {
model.getSolver().setSearch(inputOrderLBSearch(ticks));
}
@Override
public void solve() {
model.setObjective(false, model.getVars()[m - 1]);
while (model.getSolver().solve()) {
out.println("New solution found : " + model.getVars()[m - 1]);
}
}
public static void main(String[] args) {
new GolombRuler().execute(args);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy