All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.examples.integer.Grocery Maven / Gradle / Ivy

/*
 * This file is part of examples, http://choco-solver.org/
 *
 * Copyright (c) 2024, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.examples.integer;

import org.chocosolver.examples.AbstractProblem;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.constraints.Constraint;
import org.chocosolver.solver.constraints.Propagator;
import org.chocosolver.solver.constraints.PropagatorPriority;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.events.IntEventType;
import org.chocosolver.util.ESat;

import static org.chocosolver.solver.search.strategy.Search.inputOrderUBSearch;

/**
 * mozart-oz:
* "A kid goes into a grocery store and buys four items. The cashier * charges $7.11, the kid pays and is about to leave when the cashier * calls the kid back, and says ''Hold on, I multiplied the four items * instead of adding them; I'll try again; Hah, with adding them the * price still comes to $7.11''. What were the prices of the four items? *

* The model is taken from: Christian Schulte, Gert Smolka, Finite Domain * Constraint Programming in Oz. A Tutorial. 2001." *
*

* This problem deals with large domains which result in integer overflows with classical constraints. * Thus, this example introduces a dedicated propagator which handles large value products. * * @author Charles Prud'homme, Jean-Guillaume Fages * @since 08/08/11 */ public class Grocery extends AbstractProblem { IntVar[] itemCost; @Override public void buildModel() { model = new Model("Grocery"); itemCost = model.intVarArray("item", 4, 1, 711, false); model.sum(itemCost, "=", 711).post(); // intermediary products IntVar[] tmp = model.intVarArray("tmp", 2, 1, 71100, true); model.times(itemCost[0], itemCost[1], tmp[0]).post(); model.times(itemCost[2], itemCost[3], tmp[1]).post(); // the global product itemCost[0]*itemCost[1]*itemCost[2]*itemCost[3] (equal to tmp[0]*tmp[1]) // is too large to be used within integer ranges. Thus, we will set up a dedicated constraint // which uses a long to handle such a product new Constraint("LargeProduct", new PropLargeProduct(tmp, 711000000)).post(); // symmetry breaking model.arithm(itemCost[0], "<=", itemCost[1]).post(); model.arithm(itemCost[1], "<=", itemCost[2]).post(); model.arithm(itemCost[2], "<=", itemCost[3]).post(); } @Override public void configureSearch() { model.getSolver().setSearch(inputOrderUBSearch(itemCost)); } @Override public void solve() { model.getSolver().solve(); System.out.println("Grocery"); StringBuilder st = new StringBuilder(); for (int i = 0; i < 4; i++) { st.append(String.format("\titem %d : %d$\n", (i + 1), itemCost[i].getValue())); } System.out.println(st); } public static void main(String[] args) { new Grocery().execute(args); } /** * Simple propagator ensuring that vars[0]*vars[1] = target * It has been designed to handle large values (by using longs) */ private class PropLargeProduct extends Propagator { private final long target; /** * Large product propagator * * @param vrs two integer variables * @param target long representing the expected value of vrs[0]*vrs[1] */ public PropLargeProduct(IntVar[] vrs, long target) { // involved variables, priority (=arity), false (the last parameter should always be false!) super(vrs, PropagatorPriority.BINARY, true); assert vrs.length == 2; this.target = target; } @Override /** * Propagation condition : if a variable is instantiated or a domain bound is modified */ public int getPropagationConditions(int vIdx) { return IntEventType.boundAndInst(); } @Override /** * Initial propagation algorithm. Runs in O(1) */ public void propagate(int evtmask) throws ContradictionException { long min = (long) (vars[0].getLB()) * (long) (vars[1].getLB()); if (min > target) { fails(); // TODO: could be more precise, for explanation purpose } long max = (long) (vars[0].getUB()) * (long) (vars[1].getUB()); if (max > 0 && max < target) { fails(); // TODO: could be more precise, for explanation purpose } } @Override /** * Incremental propagation (called after the initial propagation, each time a variable bound is modified. * In this case, we call the initial propagation directly (it runs in constant time). */ public void propagate(int idxVarInProp, int mask) throws ContradictionException { propagate(0); } @Override /** * Entailment condition and feasibility checker */ public ESat isEntailed() { long min = (long) (vars[0].getLB()) * (long) (vars[1].getLB()); long max = (long) (vars[0].getUB()) * (long) (vars[1].getUB()); if (min > target || (max > 0 && max < target)) { return ESat.FALSE; } if (isCompletelyInstantiated()) { return ESat.TRUE; } else { return ESat.UNDEFINED; } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy