All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.examples.tutorial.GolombRuler Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of examples, http://choco-solver.org/
 *
 * Copyright (c) 2020, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.examples.tutorial;

import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.search.strategy.Search;
import org.chocosolver.solver.variables.IntVar;

/**
 * Golomb ruler problem
 * 

* * @author Charles Prud'homme * @since 22/09/2016. */ public class GolombRuler { public void modelAndSolve() { int m = 10; // A new model instance Model model = new Model("Golomb ruler"); // VARIABLES // set of marks that should be put on the ruler IntVar[] ticks = ticks = model.intVarArray("a", m, 0, 9999, true); // set of distances between two distinct marks IntVar[] diffs = model.intVarArray("d", (m * (m - 1)) / 2, 0, 9999, true); // CONSTRAINTS // the first mark is set to 0 model.arithm(ticks[0], "=", 0).post(); for (int i = 0, k = 0; i < m - 1; i++) { // // the mark variables are ordered model.arithm(ticks[i + 1], ">", ticks[i]).post(); for (int j = i + 1; j < m; j++, k++) { // declare the distance constraint between two distinct marks model.scalar(new IntVar[]{ticks[j], ticks[i]}, new int[]{1, -1}, "=", diffs[k]).post(); // redundant constraints on bounds of diffs[k] model.arithm(diffs[k], ">=", (j - i) * (j - i + 1) / 2).post(); model.arithm(diffs[k], "<=", ticks[m - 1], "-", ((m - 1 - j + i) * (m - j + i)) / 2).post(); } } // all distances must be distinct model.allDifferent(diffs, "BC").post(); //symmetry-breaking constraints model.arithm(diffs[0], "<", diffs[diffs.length - 1]).post(); Solver solver = model.getSolver(); solver.setSearch(Search.inputOrderLBSearch(ticks)); // show resolution statistics solver.showShortStatistics(); // Find a solution that minimizes the last mark solver.findOptimalSolution(ticks[m - 1], false); } public static void main(String[] args) { new GolombRuler().modelAndSolve(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy