All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.examples.integer.AirPlaneLanding Maven / Gradle / Ivy

The newest version!
/*
 * This file is part of examples, http://choco-solver.org/
 *
 * Copyright (c) 2025, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.examples.integer;

import gnu.trove.map.hash.TObjectIntHashMap;
import org.chocosolver.examples.AbstractProblem;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.constraints.Constraint;
import org.chocosolver.solver.search.strategy.Search;
import org.chocosolver.solver.variables.BoolVar;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.util.ESat;
import org.kohsuke.args4j.Option;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
import java.util.regex.Pattern;

import static java.lang.Math.max;
import static java.lang.System.out;
import static java.util.Arrays.copyOfRange;

/**
 * OR-LIBRARY:
* "Given a set of planes and runways, the objective is to minimize the total (weighted) deviation from * the target landing time for each plane. * There are costs associated with landing either earlier or later than a target landing time for each plane. * Each plane has to land on one of the runways within its predetermined time windows such that * separation criteria between all pairs of planes are satisfied. * This type of problem is a large-scale optimization problem, which occurs at busy airports where * making optimal use of the bottleneck resource (the runways) is crucial to keep the airport operating smoothly." *
* * @author Charles Prud'homme * @since 18/04/11 */ public class AirPlaneLanding extends AbstractProblem { private static final String groupSeparator = "\\,"; private static final String decimalSeparator = "\\."; private static final String non0Digit = "[\\p{javaDigit}&&[^0]]"; private static final Pattern decimalPattern; static { // \\p{javaDigit} may not be perfect, see above String digit = "([0-9])"; String groupedNumeral = "(" + non0Digit + digit + "?" + digit + "?(" + groupSeparator + digit + digit + digit + ")+)"; // Once again digit++ is used for performance, as above String numeral = "((" + digit + "++)|" + groupedNumeral + ")"; String decimalNumeral = "(" + numeral + "|" + numeral + decimalSeparator + digit + "*+|" + decimalSeparator + digit + "++)"; String decimal = "([-+]?" + decimalNumeral + ")"; decimalPattern = Pattern.compile(decimal); } @Option(name = "-d", usage = "Airplane landing Data.", required = false) Data mData = Data.airland1; //DATA private int[][] data; int n; // private static final int AT = 0; private static final int ELT = 1; private static final int TT = 2; private static final int LLT = 3; private static final int PCBT = 4; private static final int PCAT = 5; private static final int ST = 6; IntVar[] planes, tardiness, earliness; BoolVar[] bVars; int[] costLAT; TObjectIntHashMap maxCost; IntVar objective; @Override public void buildModel() { model = new Model("Air plane landing"); data = parse(mData.source()); n = data.length; planes = new IntVar[n]; tardiness = new IntVar[n]; earliness = new IntVar[n]; // int obj_ub = 0; for (int i = 0; i < n; i++) { planes[i] = model.intVar("p_" + i, data[i][ELT], data[i][LLT], true); earliness[i] = model.intVar("e_" + i, 0, data[i][TT] - data[i][ELT], true); tardiness[i] = model.intVar("t_" + i, 0, data[i][LLT] - data[i][TT], true); earliness[i].eq((planes[i].neg().add(data[i][TT])).max(0)).post(); tardiness[i].eq((planes[i].sub(data[i][TT])).max(0)).post(); } List booleans = new ArrayList<>(); //disjunctive for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { BoolVar boolVar = model.boolVar("b_" + i + "_" + j); booleans.add(boolVar); Constraint c1 = precedence(planes[i], data[i][ST + j], planes[j]); Constraint c2 = precedence(planes[j], data[j][ST + i], planes[i]); // model.ifThenElse(boolVar, c1, c2); model.addClausesBoolNot(c1.reify(),c2.reify()); } } bVars = booleans.toArray(new BoolVar[booleans.size()]); objective = model.intVar("obj", 0, 999999, true); // build C array costLAT = new int[2 * n]; maxCost = new TObjectIntHashMap<>(); for (int i = 0; i < n; i++) { costLAT[i] = data[i][PCBT]; costLAT[n + i] = data[i][PCAT]; maxCost.put(planes[i], max(data[i][PCBT], data[i][PCAT])); } IntVar obj_e = model.intVar("obj_e", 0, 999999, true); model.scalar(earliness, copyOfRange(costLAT, 0, n), "=", obj_e).post(); IntVar obj_t = model.intVar("obj_t", 0, 999999, true); model.scalar(tardiness, copyOfRange(costLAT, n, 2 * n), "=", obj_t).post(); model.sum(new IntVar[]{obj_e, obj_t}, "=", objective).post(); model.allDifferent(planes, "BC").post(); model.setObjective(false, objective); } static Constraint precedence(IntVar x, int duration, IntVar y) { return x.getModel().arithm(x, "<=", y, "-", duration); } @Override public void configureSearch() { // Arrays.sort(planes, (o1, o2) -> maxCost.get(o2) - maxCost.get(o1)); Solver r = model.getSolver(); r.setSearch(Search.minDomLBSearch(planes)); // r.set(/*randomSearch(bVars, seed), */inputOrderLBSearch(planes)); } @Override public void solve() { while (model.getSolver().solve()) { out.println("New solution found : " + objective); prettyOut(); } } private void prettyOut() { System.out.printf("Air plane landing(%s)%n", mData); StringBuilder st = new StringBuilder(); if (model.getSolver().isFeasible() != ESat.TRUE) { st.append("\tINFEASIBLE"); } else { for (int i = 0; i < n; i++) { System.out.printf("%s lands at %d, (diff: %d)\n", planes[i].getName(), planes[i].getValue(), planes[i].getValue() - data[i][TT]); } } // System.out.println(st.toString()); } public static void main(String[] args) { new AirPlaneLanding().execute(args); } private int[][] parse(String source) { Scanner sc = new Scanner(source); int nb = sc.nextInt(); data = new int[nb][6 + nb]; sc.nextLine(); for (int i = 0; i < nb; i++) { data[i][0] = sc.nextInt(); // appearance time data[i][1] = sc.nextInt(); // earliest landing time data[i][2] = sc.nextInt(); // target landing time data[i][3] = sc.nextInt(); // latest landing time double tt = Double.parseDouble(sc.next(decimalPattern)); data[i][4] = (int) Math.ceil(tt); // penalty C per unit of time for landing before target tt = Double.parseDouble(sc.next(decimalPattern)); data[i][5] = (int) Math.ceil(tt); // penalty C per unit of time for landing after target for (int j = 0; j < nb; j++) { data[i][6 + j] = sc.nextInt(); } } sc.close(); return data; } ///////////////////////////////////////// enum Data { airland1(" 10 10 \n" + " 54 129 155 559 10.00 10.00\n" + " 99999 3 15 15 15 15 15 15 15 15 \n" + " 120 195 258 744 10.00 10.00 \n" + " 3 99999 15 15 15 15 15 15 15 15 \n" + " 14 89 98 510 30.00 30.00 \n" + " 15 15 99999 8 8 8 8 8 8 8 \n" + " 21 96 106 521 30.00 30.00 \n" + " 15 15 8 99999 8 8 8 8 8 8 \n" + " 35 110 123 555 30.00 30.00 \n" + " 15 15 8 8 99999 8 8 8 8 8 \n" + " 45 120 135 576 30.00 30.00 \n" + " 15 15 8 8 8 99999 8 8 8 8 \n" + " 49 124 138 577 30.00 30.00 \n" + " 15 15 8 8 8 8 99999 8 8 8 \n" + " 51 126 140 573 30.00 30.00 \n" + " 15 15 8 8 8 8 8 99999 8 8 \n" + " 60 135 150 591 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 99999 8 \n" + " 85 160 180 657 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 8 99999" ), airland2(" 15 10 \n" + " 54 129 155 559 10.00 10.00 \n" + " 99999 3 15 15 15 15 15 15 \n" + " 15 15 3 3 15 15 3 \n" + " 115 190 250 732 10.00 10.00 \n" + " 3 99999 15 15 15 15 15 15 \n" + " 15 15 3 3 15 15 3 \n" + " 9 84 93 501 30.00 30.00 \n" + " 15 15 99999 8 8 8 8 8 \n" + " 8 8 15 15 8 8 15 \n" + " 14 89 98 509 30.00 30.00 \n" + " 15 15 8 99999 8 8 8 8 \n" + " 8 8 15 15 8 8 15 \n" + " 25 100 111 536 30.00 30.00 \n" + " 15 15 8 8 99999 8 8 8 \n" + " 8 8 15 15 8 8 15 \n" + " 32 107 120 552 30.00 30.00 \n" + " 15 15 8 8 8 99999 8 8 \n" + " 8 8 15 15 8 8 15 \n" + " 34 109 121 550 30.00 30.00 \n" + " 15 15 8 8 8 8 99999 8 \n" + " 8 8 15 15 8 8 15 \n" + " 34 109 120 544 30.00 30.00 \n" + " 15 15 8 8 8 8 8 99999 \n" + " 8 8 15 15 8 8 15 \n" + " 40 115 128 557 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 \n" + " 99999 8 15 15 8 8 15 \n" + " 59 134 151 610 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 \n" + " 8 99999 15 15 8 8 15 \n" + " 191 266 341 837 10.00 10.00 \n" + " 3 3 15 15 15 15 15 15 \n" + " 15 15 99999 3 15 15 3 \n" + " 176 251 313 778 10.00 10.00 \n" + " 3 3 15 15 15 15 15 15 \n" + " 15 15 3 99999 15 15 3 \n" + " 85 160 181 674 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 \n" + " 8 8 15 15 99999 8 15 \n" + " 77 152 171 637 30.00 30.00 \n" + " 15 15 8 8 8 8 8 8 \n" + " 8 8 15 15 8 99999 15 \n" + " 201 276 342 815 10.00 10.00 \n" + " 3 3 15 15 15 15 15 15 \n" + " 15 15 3 3 15 15 99999"), airland3(" 20 10\n" + " 0 75 82 486 30.00 30.00 \n" + " 99999 15 15 8 15 8 15 8 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 82 157 197 628 10.00 10.00 \n" + " 15 99999 3 15 3 15 3 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 3 3 15 15 \n" + " 59 134 160 561 10.00 10.00 \n" + " 15 3 99999 15 3 15 3 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 3 3 15 15 \n" + " 28 103 117 565 30.00 30.00 \n" + " 8 15 15 99999 15 8 15 8 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 126 201 261 735 10.00 10.00 \n" + " 15 3 3 15 99999 15 3 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 3 3 15 15 \n" + " 20 95 106 524 30.00 30.00 \n" + " 8 15 15 8 15 99999 15 8 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 110 185 229 664 10.00 10.00 \n" + " 15 3 3 15 3 15 99999 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 3 3 15 15 \n" + " 23 98 108 523 30.00 30.00 \n" + " 8 15 15 8 15 8 15 99999 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 42 117 132 578 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 99999 8 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 42 117 130 569 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 8 99999 8 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 57 132 149 615 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 8 8 99999 8 15 15 15 15 \n" + " 15 15 8 8 \n" + " 39 114 126 551 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 8 8 8 99999 15 15 15 15 \n" + " 15 15 8 8 \n" + " 186 261 336 834 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 99999 3 3 3 \n" + " 3 3 15 15 \n" + " 175 250 316 790 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 3 99999 3 3 \n" + " 3 3 15 15 \n" + " 139 214 258 688 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 3 3 99999 3 \n" + " 3 3 15 15 \n" + " 235 310 409 967 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 3 3 3 99999 \n" + " 3 3 15 15 \n" + " 194 269 338 818 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 99999 3 15 15 \n" + " 162 237 287 726 10.00 10.00 \n" + " 15 3 3 15 3 15 3 15 \n" + " 15 15 15 15 3 3 3 3 \n" + " 3 99999 15 15 \n" + " 69 144 160 607 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 99999 8 \n" + " 76 151 169 624 30.00 30.00 \n" + " 8 15 15 8 15 8 15 8 \n" + " 8 8 8 8 15 15 15 15 \n" + " 15 15 8 99999"); final String source; Data(String source) { this.source = source; } String source() { return source; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy