
crfsuite.linux_x86_32.include.crfsuite_api.hpp Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cleartk-ml-crfsuite Show documentation
Show all versions of cleartk-ml-crfsuite Show documentation
ClearTK wrapper for the CRFsuite
/*
* CRFsuite C++/SWIG API.
*
* Copyright (c) 2007-2010, Naoaki Okazaki
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of the authors nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CRFSUITE_API_HPP__
#define __CRFSUITE_API_HPP__
#include
#include
#include
#ifndef __CRFSUITE_H__
#ifdef __cplusplus
extern "C" {
#endif/*__cplusplus*/
struct tag_crfsuite_model;
typedef struct tag_crfsuite_model crfsuite_model_t;
struct tag_crfsuite_data;
typedef struct tag_crfsuite_data crfsuite_data_t;
struct tag_crfsuite_trainer;
typedef struct tag_crfsuite_trainer crfsuite_trainer_t;
struct tag_crfsuite_tagger;
typedef struct tag_crfsuite_tagger crfsuite_tagger_t;
struct tag_crfsuite_dictionary;
typedef struct tag_crfsuite_dictionary crfsuite_dictionary_t;
struct tag_crfsuite_params;
typedef struct tag_crfsuite_params crfsuite_params_t;
#ifdef __cplusplus
}
#endif/*__cplusplus*/
#endif/*__CRFSUITE_H__*/
/**
\page crfsuite_hpp_api CRFSuite C++/SWIG API
@section crfsuite_hpp_api_intro Introduction
The CRFSuite C++/SWIG API provides a high-level and easy-to-use library module
for a number of programming languages. The C++/SWIG API is a wrapper for the
CRFSuite C API.
- @link crfsuite_hpp_api_doc API documentation @endlink
@section crfsuite_hpp_api_cpp C++ API
The C++ library is implemented in two header files, crfsuite_api.hpp and
crfsuite.hpp. One can use the C++ API only by including crfsuite.hpp. The C++
library has a dependency to the CRFSuite C library, which means that the
C header file (crfsuite.h) and libcrfsuite library are necessary.
@section crfsuite_hpp_api_swig SWIG API
The SWIG API is identical to the C++ API. Currently, the CRFsuite distribution
includes a Python module for CRFsuite. Please read README under swig/python
directory for the information to build the Python module.
@subsection crfsuite_hpp_api_sample Sample code
This code demonstrates how to use the crfsuite.Trainer object. The script
reads a training data from STDIN, trains a model using 'l2sgd' algorithm,
and stores the model to a file (the first argument of the commend line).
@include swig/python/sample_train.py
This code demonstrates how to use the crfsuite.Tagger object. The script
loads a model from a file (the first argument of the commend line), reads
a data from STDIN, predicts label sequences.
@include swig/python/sample_tag.py
*/
namespace CRFSuite
{
/**
* \addtogroup crfsuite_hpp_api_doc Data structures
* @{
*/
/**
* Tuple of attribute and its value.
*/
class Attribute
{
public:
/// Attribute.
std::string attr;
/// Attribute value (weight).
double value;
/**
* Construct an attribute with the default name and value.
*/
Attribute() : value(1.)
{
}
/**
* Construct an attribute with the default value.
* @param name The attribute name.
*/
Attribute(const std::string& name) : attr(name), value(1.)
{
}
/**
* Construct an attribute.
* @param name The attribute name.
* @param val The attribute value.
*/
Attribute(const std::string& name, double val) : attr(name), value(val)
{
}
};
/**
* Type of an item (equivalent to an attribute vector) in a sequence.
*/
typedef std::vector Item;
/**
* Type of an item sequence (equivalent to item vector).
*/
typedef std::vector- ItemSequence;
/**
* Type of a string list.
*/
typedef std::vector
StringList;
/**
* The trainer class.
* This class maintains a data set for training, and provides an interface
* to various graphical models and training algorithms. The standard
* procedure for implementing a trainer is:
* - create a class by inheriting this class
* - overwrite message() function to receive messages of training progress
* - call append() to append item/label sequences to the training set
* - call select() to specify a graphical model and an algorithm
* - call set() to configure parameters specific to the model and algorithm
* - call train() to start a training process with the current setting
*/
class Trainer {
protected:
crfsuite_data_t *data;
crfsuite_trainer_t *tr;
public:
/**
* Construct a trainer.
*/
Trainer();
/**
* Destruct a trainer.
*/
virtual ~Trainer();
/**
* Remove all instances in the data set.
*/
void clear();
/**
* Append an instance (item/label sequence) to the data set.
* @param xseq The item sequence of the instance.
* @param yseq The label sequence of the instance. The number
* of elements in yseq must be identical to that
* in xseq.
* @param group The group number of the instance.
* @throw std::invalid_argument Arguments xseq and yseq are invalid.
* @throw std::runtime_error Out of memory.
*/
void append(const ItemSequence& xseq, const StringList& yseq, int group);
/**
* Initialize the training algorithm.
* @param algorithm The name of the training algorithm.
* @param type The name of the graphical model.
* @return bool \c true if the training algorithm is successfully
* initialized, \c false otherwise.
*/
bool select(const std::string& algorithm, const std::string& type);
/**
* Run the training algorithm.
* This function starts the training algorithm with the data set given
* by append() function. After starting the training process, the
* training algorithm invokes the virtual function message() to report
* the progress of the training process.
* @param model The filename to which the trained model is stored.
* If this value is empty, this function does not
* write out a model file.
* @param holdout The group number of holdout evaluation. The
* instances with this group number will not be used
* for training, but for holdout evaluation. Specify
* \c -1 to use all instances for training.
* @return int The status code.
*/
int train(const std::string& model, int holdout);
/**
* Obtain the list of parameters.
* This function returns the list of parameter names available for the
* graphical model and training algorithm specified by select() function.
* @return StringList The list of parameters available for the current
* graphical model and training algorithm.
*/
StringList params();
/**
* Set a training parameter.
* This function sets a parameter value for the graphical model and
* training algorithm specified by select() function.
* @param name The parameter name.
* @param value The value of the parameter.
* @throw std::invalid_argument The parameter is not found.
*/
void set(const std::string& name, const std::string& value);
/**
* Get the value of a training parameter.
* This function gets a parameter value for the graphical model and
* training algorithm specified by select() function.
* @param name The parameter name.
* @return std::string The value of the parameter.
* @throw std::invalid_argument The parameter is not found.
*/
std::string get(const std::string& name);
/**
* Get the description of a training parameter.
* This function obtains the help message for the parameter specified
* by the name. The graphical model and training algorithm must be
* selected by select() function before calling this function.
* @param name The parameter name.
* @return std::string The description (help message) of the parameter.
*/
std::string help(const std::string& name);
/**
* Receive messages from the training algorithm.
* Override this member function to receive messages of the training
* process.
* @param msg The message
*/
virtual void message(const std::string& msg);
protected:
void init();
static int __logging_callback(void *userdata, const char *format, va_list args);
};
/**
* The tagger class.
* This class provides the functionality for predicting label sequences for
* input sequences using a model.
*/
class Tagger
{
protected:
crfsuite_model_t *model;
crfsuite_tagger_t *tagger;
public:
/**
* Construct a tagger.
*/
Tagger();
/**
* Destruct a tagger.
*/
virtual ~Tagger();
/**
* Open a model file.
* @param name The file name of the model file.
* @return bool \c true if the model file is successfully opened,
* \c false otherwise (e.g., when the mode file is
* not found).
* @throw std::runtime_error An internal error in the model.
*/
bool open(const std::string& name);
/**
* Close the model.
*/
void close();
/**
* Obtain the list of labels.
* @return StringList The list of labels in the model.
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
StringList labels();
/**
* Predict the label sequence for the item sequence.
* This function calls set() and viterbi() functions to obtain the
* label sequence predicted for the item sequence.
* @param xseq The item sequence to be tagged.
* @return StringList The label sequence predicted.
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
StringList tag(const ItemSequence& xseq);
/**
* Set an item sequence.
* This function sets an item sequence for future calls for
* viterbi(), probability(), and marginal() functions.
* @param xseq The item sequence to be tagged
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
void set(const ItemSequence& xseq);
/**
* Find the Viterbi label sequence for the item sequence.
* @return StringList The label sequence predicted.
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
StringList viterbi();
/**
* Compute the probability of the label sequence.
* @param yseq The label sequence.
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
double probability(const StringList& yseq);
/**
* Compute the marginal probability of the label.
* @param y The label.
* @param t The position of the label.
* @throw std::invalid_argument A model is not opened.
* @throw std::runtime_error An internal error.
*/
double marginal(const std::string& y, const int t);
};
/**
* Obtain the version number of the library.
* @return std::string The version string.
*/
std::string version();
/**@} */
};
#endif/*__CRFSUITE_API_HPP__*/
© 2015 - 2025 Weber Informatics LLC | Privacy Policy