All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.cleartk.timeml.eval.TempEval2013Evaluation Maven / Gradle / Ivy

There is a newer version: 3.0.0
Show newest version
/*
 * Copyright (c) 2013, Regents of the University of Colorado 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 
 * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 
 * Neither the name of the University of Colorado at Boulder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE. 
 */
package org.cleartk.timeml.eval;

import java.io.File;
import java.io.IOException;
import java.net.URI;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;

import org.apache.uima.UimaContext;
import org.apache.uima.analysis_engine.AnalysisEngine;
import org.apache.uima.analysis_engine.AnalysisEngineDescription;
import org.apache.uima.analysis_engine.AnalysisEngineProcessException;
import org.apache.uima.cas.CAS;
import org.apache.uima.cas.CASException;
import org.apache.uima.cas.Feature;
import org.apache.uima.collection.CollectionReader;
import org.apache.uima.fit.component.JCasAnnotator_ImplBase;
import org.apache.uima.fit.component.ViewCreatorAnnotator;
import org.apache.uima.fit.descriptor.ConfigurationParameter;
import org.apache.uima.fit.factory.AggregateBuilder;
import org.apache.uima.fit.factory.AnalysisEngineFactory;
import org.apache.uima.fit.pipeline.JCasIterator;
import org.apache.uima.fit.pipeline.SimplePipeline;
import org.apache.uima.fit.util.JCasUtil;
import org.apache.uima.jcas.JCas;
import org.apache.uima.jcas.cas.TOP;
import org.apache.uima.resource.ResourceInitializationException;
import org.apache.uima.util.CasCopier;
import org.cleartk.corpus.timeml.PlainTextTlinkGoldAnnotator;
import org.cleartk.corpus.timeml.TempEval2013Writer;
import org.cleartk.corpus.timeml.TimeMlGoldAnnotator;
import org.cleartk.eval.AnnotationStatistics;
import org.cleartk.eval.Evaluation_ImplBase;
import org.cleartk.ml.liblinear.LibLinearStringOutcomeDataWriter;
import org.cleartk.opennlp.tools.ParserAnnotator;
import org.cleartk.opennlp.tools.PosTaggerAnnotator;
import org.cleartk.opennlp.tools.SentenceAnnotator;
import org.cleartk.snowball.DefaultSnowballStemmer;
import org.cleartk.timeml.event.EventAnnotator;
import org.cleartk.timeml.event.EventAspectAnnotator;
import org.cleartk.timeml.event.EventClassAnnotator;
import org.cleartk.timeml.event.EventModalityAnnotator;
import org.cleartk.timeml.event.EventPolarityAnnotator;
import org.cleartk.timeml.event.EventTenseAnnotator;
import org.cleartk.timeml.time.TimeAnnotator;
import org.cleartk.timeml.time.TimeTypeAnnotator;
import org.cleartk.timeml.tlink.TemporalLinkAnnotator_ImplBase;
import org.cleartk.timeml.tlink.TemporalLinkEventToDocumentCreationTimeAnnotator;
import org.cleartk.timeml.tlink.TemporalLinkEventToSameSentenceTimeAnnotator;
import org.cleartk.timeml.tlink.TemporalLinkEventToSubordinatedEventAnnotator;
import org.cleartk.timeml.type.Anchor;
import org.cleartk.timeml.type.DocumentCreationTime;
import org.cleartk.timeml.type.Event;
import org.cleartk.timeml.type.TemporalLink;
import org.cleartk.timeml.type.Text;
import org.cleartk.timeml.type.Time;
import org.cleartk.token.tokenizer.TokenAnnotator;
import org.cleartk.util.ViewUriUtil;
import org.cleartk.util.ae.UriToDocumentTextAnnotator;
import org.cleartk.util.cr.UriCollectionReader;
import org.jdom2.Document;
import org.jdom2.Element;
import org.jdom2.JDOMException;
import org.jdom2.filter.Filters;
import org.jdom2.input.SAXBuilder;
import org.jdom2.output.XMLOutputter;

import com.google.common.base.Function;
import com.google.common.collect.ImmutableMultimap;
import com.google.common.collect.ImmutableTable;
import com.google.common.collect.LinkedHashMultimap;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.collect.Multimap;
import com.google.common.collect.Queues;
import com.google.common.collect.Sets;
import com.google.common.collect.Table;
import com.lexicalscope.jewel.cli.CliFactory;
import com.lexicalscope.jewel.cli.Option;

/**
 * Trains and evaluates event, time and temporal relation models on the TempEval 2013 data.
 * 
 * 
* Copyright (c) 2013, Regents of the University of Colorado
* All rights reserved. * * @author Steven Bethard */ public class TempEval2013Evaluation extends Evaluation_ImplBase, Model.Params, AnnotationStatistics>> { interface Options { @Option(longName = "train-dirs") List getTrainDirectories(); @Option(longName = "test-dirs", defaultToNull = true) List getTestDirectories(); @Option(longName = "inferred-tlinks", defaultToNull = true) List getInferredTLinksDirectories(); @Option(longName = "verb-clause-tlinks") boolean getVerbClauseTLinks(); @Option(longName = "relations-only") boolean getRelationsOnly(); @Option(longName = "tune", defaultToNull = true) String getNameOfModelToTune(); @Option(longName = "train-only") boolean getTrainOnly(); } public static void main(String[] args) throws Exception { Options options = CliFactory.parseArguments(Options.class, args); List trainFiles = listAllFiles(options.getTrainDirectories()); List testFiles = listAllFiles(options.getTestDirectories()); // map names to models List> allModels = Lists.> newArrayList( TIME_EXTENT_MODEL, TIME_TYPE_MODEL, EVENT_EXTENT_MODEL, EVENT_ASPECT_MODEL, EVENT_CLASS_MODEL, EVENT_MODALITY_MODEL, EVENT_POLARITY_MODEL, EVENT_TENSE_MODEL, TLINK_EVENT_DOCTIME_MODEL, TLINK_EVENT_SENTTIME_MODEL, TLINK_EVENT_SUBORDEVENT_MODEL); Map> nameToModel = Maps.newHashMap(); for (Model model : allModels) { nameToModel.put(model.name, model); } // determine which parameters each model should be trained with ImmutableMultimap.Builder, Model.Params> modelsBuilder = ImmutableMultimap.builder(); String nameOfModelToTune = options.getNameOfModelToTune(); if (nameOfModelToTune == null) { for (Model model : allModels) { if (!options.getRelationsOnly() || model.name.startsWith("tlink")) { modelsBuilder.put(model, model.bestParams); } } } else { Model modelToTune = nameToModel.get(nameOfModelToTune); if (modelToTune == null) { throw new IllegalArgumentException("No such model: " + nameOfModelToTune); } for (Model model : getSortedPrerequisites(modelToTune)) { if (!options.getRelationsOnly() || model.name.startsWith("tlink")) { modelsBuilder.put(model, model.bestParams); } } for (Model.Params params : modelToTune.paramsToSearch) { modelsBuilder.put(modelToTune, params); } } ImmutableMultimap, Model.Params> models = modelsBuilder.build(); // create the evaluation manager File evalDir = new File("target/tempeval2013"); TempEval2013Evaluation evaluation = new TempEval2013Evaluation( evalDir, models, options.getInferredTLinksDirectories(), options.getVerbClauseTLinks(), options.getRelationsOnly()); // just train a model if (options.getTrainOnly()) { if (!testFiles.isEmpty()) { throw new IllegalArgumentException("Cannot specify test files when only training"); } evaluation.train(evaluation.getCollectionReader(trainFiles), Model.DEFAULT_DIRECTORY); for (Model model : models.keySet()) { for (Model.Params params : models.get(model)) { model.cleanTrainingFiles(Model.DEFAULT_DIRECTORY, params); } } } else { // run a simple train-and-test ImmutableTable, Model.Params, AnnotationStatistics> modelStats; if (!testFiles.isEmpty()) { modelStats = evaluation.trainAndTest(trainFiles, testFiles); } // run a cross-validation else { List, Model.Params, AnnotationStatistics>> foldStats; foldStats = evaluation.crossValidation(trainFiles, 2); // prepare a table of stats for all models and parameters ImmutableTable.Builder, Model.Params, AnnotationStatistics> modelStatsBuilder = ImmutableTable.builder(); for (Model model : models.keySet()) { for (Model.Params params : models.get(model)) { modelStatsBuilder.put(model, params, new AnnotationStatistics()); } } modelStats = modelStatsBuilder.build(); // combine all fold stats into a single overall stats for (Table, Model.Params, AnnotationStatistics> foldTable : foldStats) { for (Table.Cell, Model.Params, AnnotationStatistics> cell : foldTable.cellSet()) { modelStats.get(cell.getRowKey(), cell.getColumnKey()).addAll(cell.getValue()); } } } // print out all model performance for (Model model : models.keySet()) { for (Model.Params params : modelStats.row(model).keySet()) { System.err.printf("== %s %s ==\n", model.name, params); System.err.println(modelStats.get(model, params)); } } } } private static List listAllFiles(List directories) { List files = Lists.newArrayList(); if (directories != null) { for (File dir : directories) { for (File file : dir.listFiles()) { if (!file.getName().startsWith(".") && !file.isHidden()) { files.add(file); } } } } return files; } private static Set> getPrerequisites(Model model) { Set> prereqs = Sets.newLinkedHashSet(); for (Model prereq : model.prerequisites) { prereqs.add(prereq); prereqs.addAll(getPrerequisites(prereq)); } return prereqs; } private static LinkedHashSet> getSortedPrerequisites(Model model) { Queue> todo = Queues.newArrayDeque(); Multimap, Model> following = LinkedHashMultimap.create(); for (Model prereq : getPrerequisites(model)) { if (prereq.prerequisites.isEmpty()) { todo.add(prereq); } else { for (Model preprereq : prereq.prerequisites) { following.put(preprereq, prereq); } } } LinkedHashSet> models = Sets.newLinkedHashSet(); while (!todo.isEmpty()) { Model next = todo.iterator().next(); todo.remove(next); models.add(next); for (Model prereq : following.removeAll(next)) { if (!following.containsKey(prereq)) { todo.add(prereq); } } } return models; } private static Function> TEMPORAL_LINK_TO_SPANS = new Function>() { @Override public List apply(TemporalLink temporalLink) { // order source and target indexes, left-to-right Anchor source = temporalLink.getSource(); Anchor target = temporalLink.getTarget(); return source.getBegin() < target.getBegin() ? Lists.newArrayList(source.getBegin(), source.getEnd(), target.getBegin(), target.getEnd()) : Lists.newArrayList(target.getBegin(), target.getEnd(), source.getBegin(), source.getEnd()); } }; private static Function TEMPORAL_LINK_TO_RELATION = new Function() { @Override public String apply(TemporalLink temporalLink) { // match relation with left-to-right ordering of indexes Anchor source = temporalLink.getSource(); Anchor target = temporalLink.getTarget(); return source.getBegin() < target.getBegin() ? temporalLink.getRelationType() : TemporalLinkAnnotator_ImplBase.REVERSE_RELATION.get(temporalLink.getRelationType()); } }; private static List SEQUENCE_CLASSIFIER_PARAM_SEARCH_SPACE = Lists.newArrayList( // L2-regularized L2-loss support vector classification (dual) new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "0.1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "0.5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "10", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 1, "-c", "50", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "0.1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "0.5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "10", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 2, "-c", "50", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "0.1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "0.5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "10", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, 3, "-c", "50", "-s", "1")); // // default is --iterations 500 --gaussian-variance 10 // new Model.Params(MalletCRFStringOutcomeDataWriter.class), // new Model.Params(MalletCRFStringOutcomeDataWriter.class, "--forbidden", "O,I"), // new Model.Params(MalletCRFStringOutcomeDataWriter.class, "--iterations", "100"), // new Model.Params(MalletCRFStringOutcomeDataWriter.class, "--iterations", "1000"), // new Model.Params(MalletCRFStringOutcomeDataWriter.class, "--gaussian-variance", "1"), // new Model.Params(MalletCRFStringOutcomeDataWriter.class, "--gaussian-variance", "100")); // private static final String priorFlag = "--gaussianPriorVariance"; private static List CLASSIFIER_PARAM_SEARCH_SPACE = Lists.newArrayList( // // default is --gaussianPriorVariance 1 // new Model.Params(MalletStringOutcomeDataWriter.class, "MaxEnt"), // new Model.Params(MalletStringOutcomeDataWriter.class, "MaxEnt", priorFlag, "0.1"), // new Model.Params(MalletStringOutcomeDataWriter.class, "MaxEnt", priorFlag, "10"), // // default is [iterations cutoff] 100 5 // new Model.Params(MaxentStringOutcomeDataWriter.class), // new Model.Params(MaxentStringOutcomeDataWriter.class, "100", "10"), // new Model.Params(MaxentStringOutcomeDataWriter.class, "500", "5"), // L2-regularized logistic regression (primal) new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "0.1", "-s", "0"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "0.5", "-s", "0"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "1", "-s", "0"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "5", "-s", "0"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "10", "-s", "0"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "50", "-s", "0"), // L2-regularized L2-loss support vector classification (dual) new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "0.1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "0.5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "1", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "5", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "10", "-s", "1"), new Model.Params(LibLinearStringOutcomeDataWriter.class, "-c", "50", "-s", "1")); private static final Model




© 2015 - 2024 Weber Informatics LLC | Privacy Policy