All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.doubles.DoubleRBTreeSet Maven / Gradle / Ivy

The newest version!
/*
	* Copyright (C) 2002-2024 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.doubles;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.SortedSet;
import java.util.NoSuchElementException;
/** A type-specific red-black tree set with a fast, small-footprint implementation.
	*
	* 

The iterators provided by this class are type-specific {@link * it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. * Moreover, the iterator returned by {@code iterator()} can be safely cast * to a type-specific {@linkplain java.util.ListIterator list iterator}. */ public class DoubleRBTreeSet extends AbstractDoubleSortedSet implements java.io.Serializable, Cloneable, DoubleSortedSet { /** A reference to the root entry. */ protected transient Entry tree; /** Number of elements in this set. */ protected int count; /** The entry of the first element of this set. */ protected transient Entry firstEntry; /** The entry of the last element of this set. */ protected transient Entry lastEntry; /** This set's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This set's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient DoubleComparator actualComparator; private static final long serialVersionUID = -7046029254386353130L; { allocatePaths(); } /** Creates a new empty tree set. */ public DoubleRBTreeSet() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a given {@link Comparator} is specified and stored in {@link * #storedComparator}, we must check whether it is type-specific. If it is * so, we can used directly, and we store it in {@link #actualComparator}. Otherwise, * we adapt it using a helper static method. */ private void setActualComparator() { actualComparator = DoubleComparators.asDoubleComparator(storedComparator); } /** Creates a new empty tree set with the given comparator. * * @param c a {@link Comparator} (even better, a type-specific comparator). */ public DoubleRBTreeSet(final Comparator c) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree set copying a given collection. * * @param c a collection to be copied into the new tree set. */ public DoubleRBTreeSet(final Collection c) { this(); addAll(c); } /** Creates a new tree set copying a given sorted set (and its {@link Comparator}). * * @param s a {@link SortedSet} to be copied into the new tree set. */ public DoubleRBTreeSet(final SortedSet s) { this(s.comparator()); addAll(s); } /** Creates a new tree set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new tree set. */ public DoubleRBTreeSet(final DoubleCollection c) { this(); addAll(c); } /** Creates a new tree set copying a given type-specific sorted set (and its {@link Comparator}). * * @param s a type-specific sorted set to be copied into the new tree set. */ public DoubleRBTreeSet(final DoubleSortedSet s) { this(s.comparator()); addAll(s); } /** Creates a new tree set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public DoubleRBTreeSet(final DoubleIterator i) { while(i.hasNext()) add(i.nextDouble()); } /** Creates a new tree set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public DoubleRBTreeSet(final Iterator i) { this(DoubleIterators.asDoubleIterator(i)); } /** Creates a new tree set and fills it with the elements of a given array using a given {@link Comparator}. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public DoubleRBTreeSet(final double[] a, final int offset, final int length, final Comparator c) { this(c); DoubleArrays.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } /** Creates a new tree set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public DoubleRBTreeSet(final double[] a, final int offset, final int length) { this(a, offset, length, null); } /** Creates a new tree set copying the elements of an array. * * @param a an array to be copied into the new tree set. */ public DoubleRBTreeSet(final double[] a) { this(); int i = a.length; while(i-- != 0) add(a[i]); } /** Creates a new tree set copying the elements of an array using a given {@link Comparator}. * * @param a an array to be copied into the new tree set. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public DoubleRBTreeSet(final double[] a, final Comparator c) { this(c); int i = a.length; while(i-- != 0) add(a[i]); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in RBTreeMap.drv. * * The add()/remove() code is derived from Ben Pfaff's GNU libavl * (https://adtinfo.org/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-{@code null}. * Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual * (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ final int compare(final double k1, final double k2) { return actualComparator == null ? ( Double.compare((k1),(k2)) ) : actualComparator.compare(k1, k2); } /** Returns the entry corresponding to the given key, if it is in the tree; {@code null}, otherwise. * * @param k the key to search for. * @return the corresponding entry, or {@code null} if no entry with the given key exists. */ private Entry findKey(final double k) { Entry e = tree; int cmp; while (e != null && (cmp = compare(k, e.key)) != 0) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be * the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey(final double k) { Entry e = tree, last = tree; int cmp = 0; while (e != null && (cmp = compare(k, e.key)) != 0) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path and the direction followed during the * current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry nodePath[]; private void allocatePaths() { dirPath = new boolean[64]; nodePath = new Entry[64]; } @Override public boolean add(final double k) { int maxDepth = 0; if (tree == null) { // The case of the empty tree is treated separately. count++; tree = lastEntry = firstEntry = new Entry (k); } else { Entry p = tree, e; int cmp, i = 0; while(true) { if ((cmp = compare(k, p.key)) == 0) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return false; } nodePath[i] = p; if (dirPath[i++] = cmp > 0) { if (p.succ()) { count++; e = new Entry (k); if (p.right == null) lastEntry = e; e.left = p; e.right = p.right; p.right(e); break; } p = p.right; } else { if (p.pred()) { count++; e = new Entry (k); if (p.left == null) firstEntry = e; e.right = p; e.left = p.left; p.left(e); break; } p = p.left; } } maxDepth = i--; while(i > 0 && ! nodePath[i].black()) { if (! dirPath[i - 1]) { Entry y = nodePath[i - 1].right; if (! nodePath[i - 1].succ() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (! dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.right; x.right = y.left; y.left = x; nodePath[i - 1].left = y; if (y.pred()) { y.pred(false); x.succ(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.left = y.right; y.right = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.succ()) { y.succ(false); x.pred(y); } break; } } else { Entry y = nodePath[i - 1].left; if (! nodePath[i - 1].pred() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.left; x.left = y.right; y.right = x; nodePath[i - 1].right = y; if (y.succ()) { y.succ(false); x.pred(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.right = y.left; y.left = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.pred()){ y.pred(false); x.succ(y); } break; } } } } tree.black(true); // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; return true; } @Override public boolean remove(final double k) { if (tree == null) return false; Entry p = tree; int cmp; int i = 0; final double kk = k; while(true) { if ((cmp = compare(kk, p.key)) == 0) break; dirPath[i] = cmp > 0; nodePath[i] = p; if (dirPath[i++]) { if ((p = p.right()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return false; } } else { if ((p = p.left()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return false; } } } if (p.left == null) firstEntry = p.next(); if (p.right == null) lastEntry = p.prev(); if (p.succ()) { if (p.pred()) { if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].succ(p.right); else nodePath[i - 1].pred(p.left); } } else { p.prev().right = p.right; if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].right = p.left; else nodePath[i - 1].left = p.left; } } } else { boolean color; Entry r = p.right; if (r.pred()) { r.left = p.left; r.pred(p.pred()); if (! r.pred()) r.prev().right = r; if (i == 0) tree = r; else { if (dirPath[i - 1]) nodePath[i - 1].right = r; else nodePath[i - 1].left = r; } color = r.black(); r.black(p.black()); p.black(color); dirPath[i] = true; nodePath[i++] = r; } else { Entry s; int j = i++; while(true) { dirPath[i] = false; nodePath[i++] = r; s = r.left; if (s.pred()) break; r = s; } dirPath[j] = true; nodePath[j] = s; if (s.succ()) r.pred(s); else r.left = s.right; s.left = p.left; if (! p.pred()) { p.prev().right = s; s.pred(false); } s.right(p.right); color = s.black(); s.black(p.black()); p.black(color); if (j == 0) tree = s; else { if (dirPath[j - 1]) nodePath[j - 1].right = s; else nodePath[j - 1].left = s; } } } int maxDepth = i; if (p.black()) { for(; i > 0; i--) { if (dirPath[i - 1] && ! nodePath[i - 1].succ() || ! dirPath[i - 1] && ! nodePath[i - 1].pred()) { Entry x = dirPath[i - 1] ? nodePath[i - 1].right : nodePath[i - 1].left; if (! x.black()) { x.black(true); break; } } if (! dirPath[i - 1]) { Entry w = nodePath[i - 1].right; if (! w.black()) { w.black(true); nodePath[i - 1].black(false); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = false; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].right; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.succ() || w.right.black()) { Entry y = w.left; y.black (true); w.black(false); w.left = y.right; y.right = w; w = nodePath[i - 1].right = y; if (w.succ()) { w.succ(false); w.right.pred(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.right.black(true); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.pred()) { w.pred(false); nodePath[i - 1].succ(w); } break; } } else { Entry w = nodePath[i - 1].left; if (! w.black()) { w.black (true); nodePath[i - 1].black(false); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = true; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].left; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.pred() || w.left.black()) { Entry y = w.right; y.black(true); w.black (false); w.right = y.left; y.left = w; w = nodePath[i - 1].left = y; if (w.pred()) { w.pred(false); w.left.succ(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.left.black(true); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.succ()) { w.succ(false); nodePath[i - 1].pred(w); } break; } } } if (tree != null) tree.black(true); } count--; // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; return true; } @Override public boolean contains(final double k) { return findKey( k) != null; } @Override public void clear() { count = 0; tree = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree set. * *

We use the only "metadata", i.e., {@link Entry#info}, to store * information about color, predecessor status and successor status. * *

Note that since the class is recursive, it can be * considered equivalently a tree. */ private static final class Entry implements Cloneable { /** The the bit in this mask is true, the node is black. */ private static final int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private static final int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private static final int PRED_MASK = 1 << 30; /** The key of this entry. */ double key; /** The pointers to the left and right subtrees. */ Entry left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK}, {@link #PRED_MASK} and {@link #BLACK_MASK}). */ int info; Entry() {} /** Creates a new red entry with the given key. * * @param k a key. */ Entry(final double k) { this.key = k; info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree ({@code null} if the left * subtree is empty). */ Entry left() { return (info & PRED_MASK) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree ({@code null} if the right * subtree is empty). */ Entry right() { return (info & SUCC_MASK) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * @return true if the left pointer is a predecessor. */ boolean pred() { return (info & PRED_MASK) != 0; } /** Checks whether the right pointer is really a successor. * @return true if the right pointer is a successor. */ boolean succ() { return (info & SUCC_MASK) != 0; } /** Sets whether the left pointer is really a predecessor. * @param pred if true then the left pointer will be considered a predecessor. */ void pred(final boolean pred) { if (pred) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * @param succ if true then the right pointer will be considered a successor. */ void succ(final boolean succ) { if (succ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * @param pred the predecessr. */ void pred(final Entry pred) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * @param succ the successor. */ void succ(final Entry succ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * @param left the new left subtree. */ void left(final Entry left) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * @param right the new right subtree. */ void right(final Entry right) { info &= ~SUCC_MASK; this.right = right; } /** Returns whether this node is black. * @return true iff this node is black. */ boolean black() { return (info & BLACK_MASK) != 0; } /** Sets whether this node is black. * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black(final boolean black) { if (black) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** Computes the next entry in the set order. * * @return the next entry ({@code null}) if this is the last entry). */ Entry next() { Entry next = this.right; if ((info & SUCC_MASK) == 0) while ((next.info & PRED_MASK) == 0) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry ({@code null}) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ((info & PRED_MASK) == 0) while ((prev.info & SUCC_MASK) == 0) prev = prev.right; return prev; } @Override public Entry clone() { Entry c; try { c = (Entry )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.info = info; return c; } @Override public boolean equals(final Object o) { if (!(o instanceof Entry)) return false; Entry e = (Entry )o; return ( Double.doubleToLongBits(key) == Double.doubleToLongBits(e.key) ); } @Override public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.double2int(key); } @Override public String toString() { return String.valueOf(key); } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if (pred()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left); } else if (left != null) left.prettyPrint(level +1); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + " (" + (black() ? "black" : "red") + ")"); if (succ()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right); } else if (right != null) right.prettyPrint(level + 1); }*/ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); } */ @Override public int size() { return count; } @Override public boolean isEmpty() { return count == 0; } @Override public double firstDouble() { if (tree == null) throw new NoSuchElementException(); return firstEntry.key; } @Override public double lastDouble() { if (tree == null) throw new NoSuchElementException(); return lastEntry.key; } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class SetIterator implements DoubleListIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ Entry prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ Entry next; /** The last entry that was returned (or {@code null} if we did not iterate or used {@link #remove()}). */ Entry curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/ int index = 0; SetIterator() { next = firstEntry; } SetIterator(final double k) { if ((next = locateKey(k)) != null) { if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } @Override public boolean hasNext() { return next != null; } @Override public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } void updatePrevious() { prev = prev.prev(); } @Override public double nextDouble() { return nextEntry().key; } @Override public double previousDouble() { return previousEntry().key; } Entry nextEntry() { if (! hasNext()) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } Entry previousEntry() { if (! hasPrevious()) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } @Override public int nextIndex() { return index; } @Override public int previousIndex() { return index - 1; } @Override public void remove() { if (curr == null) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if (curr == prev) index--; next = prev = curr; updatePrevious(); updateNext(); DoubleRBTreeSet.this.remove(curr.key); curr = null; } } @Override public DoubleBidirectionalIterator iterator() { return new SetIterator(); } @Override public DoubleBidirectionalIterator iterator(final double from) { return new SetIterator(from); } @Override public DoubleComparator comparator() { return actualComparator; } @Override public DoubleSortedSet headSet(final double to) { return new Subset((0), true, to, false); } @Override public DoubleSortedSet tailSet(final double from) { return new Subset(from, false, (0), true); } @Override public DoubleSortedSet subSet(final double from, final double to) { return new Subset(from, false, to, false); } /** A subset with given range. * *

This class represents a subset. One has to specify the left/right * limits (which can be set to -∞ or ∞). Since the subset is a * view on the set, at a given moment it could happen that the limits of * the range are not any longer in the main set. Thus, things such as * {@link java.util.SortedSet#first()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Subset extends AbstractDoubleSortedSet implements java.io.Serializable, DoubleSortedSet { private static final long serialVersionUID = -7046029254386353129L; /** The start of the subset range, unless {@link #bottom} is true. */ double from; /** The end of the subset range, unless {@link #top} is true. */ double to; /** If true, the subset range starts from -∞. */ boolean bottom; /** If true, the subset range goes to ∞. */ boolean top; /** Creates a new subset with given key range. * * @param from the start of the subset range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the subset range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Subset(final double from, final boolean bottom, final double to, final boolean top) { if (! bottom && ! top && DoubleRBTreeSet.this.compare(from, to) > 0) throw new IllegalArgumentException("Start element (" + from + ") is larger than end element (" + to + ")"); this.from = from; this.bottom = bottom; this.to = to; this.top = top; } @Override public void clear() { final SubsetIterator i = new SubsetIterator(); while(i.hasNext()) { i.nextDouble(); i.remove(); } } /** Checks whether a key is in the subset range. * @param k a key. * @return true if is the key is in the subset range. */ final boolean in(final double k) { return (bottom || DoubleRBTreeSet.this.compare(k, from) >= 0) && (top || DoubleRBTreeSet.this.compare(k, to) < 0); } @Override public boolean contains(final double k) { return in( k) && DoubleRBTreeSet.this.contains(k); } @Override public boolean add(final double k) { if (! in(k)) throw new IllegalArgumentException("Element (" + k + ") out of range [" + (bottom ? "-" : String.valueOf(from)) + ", " + (top ? "-" : String.valueOf(to)) + ")"); return DoubleRBTreeSet.this.add(k); } @Override public boolean remove(final double k) { if (! in( k)) return false; return DoubleRBTreeSet.this.remove(k); } @Override public int size() { final SubsetIterator i = new SubsetIterator(); int n = 0; while(i.hasNext()) { n++; i.nextDouble(); } return n; } @Override public boolean isEmpty() { return ! new SubsetIterator().hasNext(); } @Override public DoubleComparator comparator() { return actualComparator; } @Override public DoubleBidirectionalIterator iterator() { return new SubsetIterator(); } @Override public DoubleBidirectionalIterator iterator(final double from) { return new SubsetIterator(from); } @Override public DoubleSortedSet headSet(final double to) { if (top) return new Subset(from, bottom, to, false); return compare(to, this.to) < 0 ? new Subset(from, bottom, to, false) : this; } @Override public DoubleSortedSet tailSet(final double from) { if (bottom) return new Subset(from, false, to, top); return compare(from, this.from) > 0 ? new Subset(from, false, to, top) : this; } @Override public DoubleSortedSet subSet(double from, double to) { if (top && bottom) return new Subset(from, false, to, false); if (! top) to = compare(to, this.to) < 0 ? to : this.to; if (! bottom) from = compare(from, this.from) > 0 ? from : this.from; if (! top && ! bottom && from == this.from && to == this.to) return this; return new Subset(from, false, to, false); } /** Locates the first entry. * * @return the first entry of this subset, or {@code null} if the subset is empty. */ public DoubleRBTreeSet.Entry firstEntry() { if (tree == null) return null; // If this subset goes to -infinity, we return the main set first entry; otherwise, we locate the start of the set. DoubleRBTreeSet.Entry e; if (bottom) e = firstEntry; else { e = locateKey(from); // If we find either the start or something greater we're OK. if (compare(e.key, from) < 0) e = e.next(); } // Finally, if this subset doesn't go to infinity, we check that the resulting key isn't greater than the end. if (e == null || ! top && compare(e.key, to) >= 0) return null; return e; } /** Locates the last entry. * * @return the last entry of this subset, or {@code null} if the subset is empty. */ public DoubleRBTreeSet.Entry lastEntry() { if (tree == null) return null; // If this subset goes to infinity, we return the main set last entry; otherwise, we locate the end of the set. DoubleRBTreeSet.Entry e; if (top) e = lastEntry; else { e = locateKey(to); // If we find something smaller than the end we're OK. if (compare(e.key, to) >= 0) e = e.prev(); } // Finally, if this subset doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if (e == null || ! bottom && compare(e.key, from) < 0) return null; return e; } @Override public double firstDouble() { DoubleRBTreeSet.Entry e = firstEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } @Override public double lastDouble() { DoubleRBTreeSet.Entry e = lastEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link SetIterator}, but overrides the methods that * update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would * move out of the range of the subset we just overwrite the next or previous * entry with {@code null}. */ private final class SubsetIterator extends SetIterator { SubsetIterator() { next = firstEntry(); } SubsetIterator(final double k) { this(); if (next != null) { if (! bottom && compare(k, next.key) < 0) prev = null; else if (! top && compare(k, (prev = lastEntry()).key) >= 0) next = null; else { next = locateKey(k); if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } } @Override void updatePrevious() { prev = prev.prev(); if (! bottom && prev != null && DoubleRBTreeSet.this.compare(prev.key, from) < 0) prev = null; } @Override void updateNext() { next = next.next(); if (! top && next != null && DoubleRBTreeSet.this.compare(next.key, to) >= 0) next = null; } } } /** Returns a deep copy of this tree set. * *

This method performs a deep copy of this tree set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree set. */ @Override public Object clone() { DoubleRBTreeSet c; try { c = (DoubleRBTreeSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.allocatePaths(); if (count != 0) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry (), rq = new Entry (); p = rp; rp.left(tree); q = rq; rq.pred(null); while(true) { if (! p.pred()) { e = p.left.clone(); e.pred(q.left); e.succ(q); q.left(e); p = p.left; q = q.left; } else { while(p.succ()) { p = p.right; if (p == null) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while(c.firstEntry.left != null) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while(c.lastEntry.right != null) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if (! p.succ()) { e = p.right.clone(); e.succ(q.right); e.pred(q); q.right(e); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; SetIterator i = new SetIterator(); s.defaultWriteObject(); while(n-- != 0) s.writeDouble(i.nextDouble()); } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ private Entry readTree(final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ) throws java.io.IOException, ClassNotFoundException { if (n == 1) { final Entry top = new Entry ( s.readDouble()); top.pred(pred); top.succ(succ); top.black(true); return top; } if (n == 2) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry top = new Entry ( s.readDouble()); top.black(true); top.right(new Entry ( s.readDouble())); top.right.pred(top); top.pred(pred); top.right.succ(succ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry (); top.left(readTree(s, leftN, pred, top)); top.key = s.readDouble(); top.black(true); top.right(readTree(s, rightN, top, succ)); if (n + 2 == ((n + 2) & -(n + 2))) top.right.black(false); // Quick test for determining whether n + 2 is a power of 2. return top; } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if (count != 0) { tree = readTree(s, count, null, null); Entry e; e = tree; while(e.left() != null) e = e.left(); firstEntry = e; e = tree; while(e.right() != null) e = e.right(); lastEntry = e; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy