bitronix.tm.resource.jdbc.LruStatementCache Maven / Gradle / Ivy
/*
* Bitronix Transaction Manager
*
* Copyright (c) 2010, Bitronix Software.
*
* This copyrighted material is made available to anyone wishing to use, modify,
* copy, or redistribute it subject to the terms and conditions of the GNU
* Lesser General Public License, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this distribution; if not, write to:
* Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
package bitronix.tm.resource.jdbc;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.PreparedStatement;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* Last Recently Used PreparedStatement cache with eviction listeners
* support implementation.
*
*
* @author lorban, brettw
*/
public class LruStatementCache {
private final static Logger log = LoggerFactory.getLogger(LruStatementCache.class);
/**
* The target maxSize of the cache. The cache may drift slightly
* higher in size in the case that every statement in the cache is
* in use and therefore nothing can be evicted. But eventually
* (probably quickly) the cache will return to maxSize.
*/
private int maxSize;
/**
* We use a LinkedHashMap with _access order_ specified in the
* constructor. According to the LinkedHashMap documentation:
*
* A special constructor is provided to create a linked hash map
* whose order of iteration is the order in which its entries
* were last accessed, from least-recently accessed to most-recently
* (access-order). This kind of map is well-suited to building LRU
* caches. Invoking the put or get method results in an access to
* the corresponding entry (assuming it exists after the invocation
* completes).
*
*/
private final LinkedHashMap cache;
/**
* A list of listeners concerned with prepared statement cache
* evictions.
*/
private final List evictionListners;
/**
* See the LinkedHashMap documentation. We maintain our own size
* here, rather than calling size(), because size() on a LinkedHashMap
* is proportional in time (O(n)) with the size of the collection -- i.e.
* calling size() must traverse the entire list and count the elements.
* Tracking size ourselves provides O(1) access.
*/
private int size;
public LruStatementCache(int maxSize) {
this.maxSize = maxSize;
cache = new LinkedHashMap(maxSize, 0.75f, true /* access order */);
evictionListners = new CopyOnWriteArrayList();
}
/**
* The provided key is just a 'shell' JdbcPreparedStatementHandle, it comes
* in with no actual 'delegate' PreparedStatement. However, it contains all
* other pertinent information such as SQL statement, autogeneratedkeys
* flag, cursor holdability, etc. See the equals() method in the
* JdbcPreparedStatementHandle class. It is a complete key for a cached
* statement.
*
* If there is a matching cached PreparedStatement, it will be set as the
* delegate in the provided JdbcPreparedStatementHandle.
*
* @param key the cache key
* @return the cached JdbcPreparedStatementHandle statement, or null
*/
public JdbcPreparedStatementHandle get(JdbcPreparedStatementHandle key) {
synchronized (cache) {
// See LinkedHashMap documentation. Getting an entry means it is
// updated as the 'youngest' (Most Recently Used) entry.
StatementTracker cached = cache.get(key);
if (cached != null) {
cached.usageCount++;
key.setDelegate(cached.statement);
if (log.isDebugEnabled()) log.debug("delivered from cache with usage count " + cached.usageCount + " statement <" + key + "> in " + key.getPooledConnection());
return key;
}
return null;
}
}
/**
* A statement is put into the cache. This is called when a
* statement is first prepared and also when a statement is
* closed (by the client). A "closed" statement has it's
* usage counter decremented in the cache.
*
* @param key a prepared statement handle
* @return a prepared statement
*/
public JdbcPreparedStatementHandle put(JdbcPreparedStatementHandle key) {
synchronized (cache) {
if (maxSize < 1) {
return null;
}
// See LinkedHashMap documentation. Getting an entry means it is
// updated as the 'youngest' (Most Recently Used) entry.
StatementTracker cached = cache.get(key);
if (cached == null) {
if (log.isDebugEnabled()) log.debug("adding to cache statement <" + key + "> in " + key.getPooledConnection());
cache.put(key, new StatementTracker(key.getDelegateUnchecked()));
size++;
} else {
cached.usageCount--;
if (log.isDebugEnabled()) log.debug("returning to cache statement <" + key + "> with usage count " + cached.usageCount + " in " + key.getPooledConnection());
}
// If the size is exceeded, we will _try_ to evict one (or more)
// statements until the max level is again reached. However, if
// every statement in the cache is 'in use', the size of the cache
// is not reduced. Eventually the cache will be reduced, no worries.
if (size > maxSize) {
tryEviction();
}
return key;
}
}
/**
* Evict all statements from the cache. This likely happens on
* connection close.
*/
protected void clear() {
synchronized (cache) {
Iterator it = cache.entrySet().iterator();
while (it.hasNext()) {
Map.Entry entry = (Entry) it.next();
StatementTracker tracker = (StatementTracker) entry.getValue();
it.remove();
fireEvictionEvent(tracker.statement);
}
cache.clear();
size = 0;
}
}
/**
* Try to evict statements from the cache. Only statements with a
* current usage count of zero will be evicted. Statements are
* evicted until the cache is reduced to maxSize.
*/
private void tryEviction() {
synchronized (cache) {
// Iteration order of the LinkedHashMap is from LRU to MRU
Iterator it = cache.entrySet().iterator();
while (it.hasNext()) {
Entry entry = (Entry) it.next();
StatementTracker tracker = (StatementTracker) entry.getValue();
if (tracker.usageCount == 0) {
it.remove();
size--;
JdbcPreparedStatementHandle key = (JdbcPreparedStatementHandle) entry.getKey();
if (log.isDebugEnabled()) log.debug("evicting from cache statement <" + key + "> " + key.getDelegateUnchecked() + " in " + key.getPooledConnection());
fireEvictionEvent(tracker.statement);
// We can stop evicting if we're at maxSize...
if (size <= maxSize) {
break;
}
}
}
}
}
private void fireEvictionEvent(Object value) {
for (LruEvictionListener listener : evictionListners) {
listener.onEviction(value);
}
}
public void addEvictionListener(LruEvictionListener listener) {
evictionListners.add(listener);
}
public void removeEvictionListener(LruEvictionListener listener) {
evictionListners.remove(listener);
}
private final static class StatementTracker {
private final PreparedStatement statement;
private int usageCount;
private StatementTracker(PreparedStatement stmt) {
this.statement = stmt;
this.usageCount = 1;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy