org.elasticsearch.search.aggregations.matrix.stats.InternalMatrixStats Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aggs-matrix-stats Show documentation
Show all versions of aggs-matrix-stats Show documentation
Elasticsearch module: aggs-matrix-stats
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.matrix.stats;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.search.aggregations.InternalAggregation;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import static java.util.Collections.emptyMap;
/**
* Computes distribution statistics over multiple fields
*/
public class InternalMatrixStats extends InternalAggregation implements MatrixStats {
/** per shard stats needed to compute stats */
private final RunningStats stats;
/** final result */
private final MatrixStatsResults results;
/** per shard ctor */
InternalMatrixStats(String name, long count, RunningStats multiFieldStatsResults, MatrixStatsResults results,
List pipelineAggregators, Map metaData) {
super(name, pipelineAggregators, metaData);
assert count >= 0;
this.stats = multiFieldStatsResults;
this.results = results;
}
/**
* Read from a stream.
*/
public InternalMatrixStats(StreamInput in) throws IOException {
super(in);
stats = in.readOptionalWriteable(RunningStats::new);
results = in.readOptionalWriteable(MatrixStatsResults::new);
}
@Override
protected void doWriteTo(StreamOutput out) throws IOException {
out.writeOptionalWriteable(stats);
out.writeOptionalWriteable(results);
}
@Override
public String getWriteableName() {
return MatrixStatsAggregationBuilder.NAME;
}
/** get the number of documents */
@Override
public long getDocCount() {
if (stats == null) {
return 0;
}
return stats.docCount;
}
/** get the number of samples for the given field. == docCount - numMissing */
@Override
public long getFieldCount(String field) {
if (results == null) {
return 0;
}
return results.getFieldCount(field);
}
/** get the mean for the given field */
@Override
public double getMean(String field) {
if (results == null) {
return Double.NaN;
}
return results.getMean(field);
}
/** get the variance for the given field */
@Override
public double getVariance(String field) {
if (results == null) {
return Double.NaN;
}
return results.getVariance(field);
}
/** get the distribution skewness for the given field */
@Override
public double getSkewness(String field) {
if (results == null) {
return Double.NaN;
}
return results.getSkewness(field);
}
/** get the distribution shape for the given field */
@Override
public double getKurtosis(String field) {
if (results == null) {
return Double.NaN;
}
return results.getKurtosis(field);
}
/** get the covariance between the two fields */
@Override
public double getCovariance(String fieldX, String fieldY) {
if (results == null) {
return Double.NaN;
}
return results.getCovariance(fieldX, fieldY);
}
/** get the correlation between the two fields */
@Override
public double getCorrelation(String fieldX, String fieldY) {
if (results == null) {
return Double.NaN;
}
return results.getCorrelation(fieldX, fieldY);
}
RunningStats getStats() {
return stats;
}
MatrixStatsResults getResults() {
return results;
}
static class Fields {
public static final String FIELDS = "fields";
public static final String NAME = "name";
public static final String COUNT = "count";
public static final String MEAN = "mean";
public static final String VARIANCE = "variance";
public static final String SKEWNESS = "skewness";
public static final String KURTOSIS = "kurtosis";
public static final String COVARIANCE = "covariance";
public static final String CORRELATION = "correlation";
}
@Override
public XContentBuilder doXContentBody(XContentBuilder builder, Params params) throws IOException {
builder.field(CommonFields.DOC_COUNT.getPreferredName(), getDocCount());
if (results != null && results.getFieldCounts().keySet().isEmpty() == false) {
builder.startArray(Fields.FIELDS);
for (String fieldName : results.getFieldCounts().keySet()) {
builder.startObject();
// name
builder.field(Fields.NAME, fieldName);
// count
builder.field(Fields.COUNT, results.getFieldCount(fieldName));
// mean
builder.field(Fields.MEAN, results.getMean(fieldName));
// variance
builder.field(Fields.VARIANCE, results.getVariance(fieldName));
// skewness
builder.field(Fields.SKEWNESS, results.getSkewness(fieldName));
// kurtosis
builder.field(Fields.KURTOSIS, results.getKurtosis(fieldName));
// covariance
builder.startObject(Fields.COVARIANCE);
for (String fieldB : results.getFieldCounts().keySet()) {
builder.field(fieldB, results.getCovariance(fieldName, fieldB));
}
builder.endObject();
// correlation
builder.startObject(Fields.CORRELATION);
for (String fieldB : results.getFieldCounts().keySet()) {
builder.field(fieldB, results.getCorrelation(fieldName, fieldB));
}
builder.endObject();
builder.endObject();
}
builder.endArray();
}
return builder;
}
@Override
public Object getProperty(List path) {
if (path.isEmpty()) {
return this;
} else if (path.size() == 1) {
String element = path.get(0);
if (results == null) {
return emptyMap();
}
switch (element) {
case "counts":
return results.getFieldCounts();
case "means":
return results.getMeans();
case "variances":
return results.getVariances();
case "skewness":
return results.getSkewness();
case "kurtosis":
return results.getKurtosis();
case "covariance":
return results.getCovariances();
case "correlation":
return results.getCorrelations();
default:
throw new IllegalArgumentException("Found unknown path element [" + element + "] in [" + getName() + "]");
}
} else {
throw new IllegalArgumentException("path not supported for [" + getName() + "]: " + path);
}
}
@Override
public InternalAggregation reduce(List aggregations, ReduceContext reduceContext) {
// merge stats across all shards
List aggs = new ArrayList<>(aggregations);
aggs.removeIf(p -> ((InternalMatrixStats)p).stats == null);
// return empty result iff all stats are null
if (aggs.isEmpty()) {
return new InternalMatrixStats(name, 0, null, new MatrixStatsResults(), pipelineAggregators(), getMetaData());
}
RunningStats runningStats = new RunningStats();
for (InternalAggregation agg : aggs) {
runningStats.merge(((InternalMatrixStats) agg).stats);
}
if (reduceContext.isFinalReduce()) {
MatrixStatsResults results = new MatrixStatsResults(runningStats);
return new InternalMatrixStats(name, results.getDocCount(), runningStats, results, pipelineAggregators(), getMetaData());
}
return new InternalMatrixStats(name, runningStats.docCount, runningStats, null, pipelineAggregators(), getMetaData());
}
@Override
public int hashCode() {
return Objects.hash(super.hashCode(), stats, results);
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null || getClass() != obj.getClass()) return false;
if (super.equals(obj) == false) return false;
InternalMatrixStats other = (InternalMatrixStats) obj;
return Objects.equals(this.stats, other.stats) &&
Objects.equals(this.results, other.results);
}
}