All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.codelibs.fess.ds.wikipedia.bzip2.CBZip2OutputStream Maven / Gradle / Ivy

/*
 * Copyright 2012-2024 CodeLibs Project and the Others.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied. See the License for the specific language
 * governing permissions and limitations under the License.
 */
package org.codelibs.fess.ds.wikipedia.bzip2;

import java.io.IOException;
import java.io.OutputStream;

/**
 * An output stream that compresses into the BZip2 format (without the file
 * header chars) into another stream.
 * 

* The compression requires large amounts of memory. Thus you should call the * {@link #close() close()} method as soon as possible, to force * CBZip2OutputStream to release the allocated memory. *

*

You can shrink the amount of allocated memory and maybe raise * the compression speed by choosing a lower blocksize, which in turn * may cause a lower compression ratio. You can avoid unnecessary * memory allocation by avoiding using a blocksize which is bigger * than the size of the input.

*

You can compute the memory usage for compressing by the * following formula:

*
 * <code>400k + (9 * blocksize)</code>.
 * 
*

To get the memory required for decompression by {@link * CBZip2InputStream CBZip2InputStream} use

*
 * <code>65k + (5 * blocksize)</code>.
 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Memory usage by blocksize
Blocksize Compression
* memory usage
Decompression
* memory usage
100k1300k565k
200k2200k1065k
300k3100k1565k
400k4000k2065k
500k4900k2565k
600k5800k3065k
700k6700k3565k
800k7600k4065k
900k8500k4565k
*

* For decompression CBZip2InputStream allocates less memory if the * bzipped input is smaller than one block. *

*

* Instances of this class are not threadsafe. *

*

* TODO: Update to BZip2 1.0.1 *

* @see Wikipedia River Plugin for Elasticsearch */ public class CBZip2OutputStream extends OutputStream implements BZip2Constants { /** * The minimum supported blocksize == 1. */ public static final int MIN_BLOCKSIZE = 1; /** * The maximum supported blocksize == 9. */ public static final int MAX_BLOCKSIZE = 9; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int SETMASK = (1 << 21); /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int CLEARMASK = (~SETMASK); /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int GREATER_ICOST = 15; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int LESSER_ICOST = 0; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int SMALL_THRESH = 20; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int DEPTH_THRESH = 10; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. */ protected static final int WORK_FACTOR = 30; /** * This constant is accessible by subclasses for historical * purposes. If you don't know what it means then you don't need * it. *

If you are ever unlucky/improbable enough to get a stack * overflow whilst sorting, increase the following constant and * try again. In practice I have never seen the stack go above 27 * elems, so the following limit seems very generous.

*/ protected static final int QSORT_STACK_SIZE = 1000; /** * Knuth's increments seem to work better than Incerpi-Sedgewick here. * Possibly because the number of elems to sort is usually small, typically * <= 20. */ private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 }; /** * This method is accessible by subclasses for historical * purposes. If you don't know what it does then you don't need * it. */ protected static void hbMakeCodeLengths(final char[] len, final int[] freq, final int alphaSize, final int maxLen) { /* * Nodes and heap entries run from 1. Entry 0 for both the heap and * nodes is a sentinel. */ final int[] heap = new int[MAX_ALPHA_SIZE * 2]; final int[] weight = new int[MAX_ALPHA_SIZE * 2]; final int[] parent = new int[MAX_ALPHA_SIZE * 2]; for (int i = alphaSize; --i >= 0;) { weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8; } for (boolean tooLong = true; tooLong;) { tooLong = false; int nNodes = alphaSize; int nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (int i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; int zz = nHeap; final int tmp = heap[zz]; while (weight[tmp] < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } // assert (nHeap < (MAX_ALPHA_SIZE + 2)) : nHeap; while (nHeap > 1) { final int n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; int yy = 0; int zz = 1; int tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; final int n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; yy = 0; zz = 1; tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; nNodes++; parent[n1] = parent[n2] = nNodes; final int weight_n1 = weight[n1]; final int weight_n2 = weight[n2]; weight[nNodes] = (((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff) : (weight_n2 & 0x000000ff)))); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; tmp = 0; zz = nHeap; tmp = heap[zz]; final int weight_tmp = weight[tmp]; while (weight_tmp < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } // assert (nNodes < (MAX_ALPHA_SIZE * 2)) : nNodes; for (int i = 1; i <= alphaSize; i++) { int j = 0; int k = i; for (int parent_k; (parent_k = parent[k]) >= 0;) { k = parent_k; j++; } len[i - 1] = (char) j; if (j > maxLen) { tooLong = true; } } if (tooLong) { for (int i = 1; i < alphaSize; i++) { int j = weight[i] >> 8; j = 1 + (j >> 1); weight[i] = j << 8; } } } } private static void hbMakeCodeLengths(final byte[] len, final int[] freq, final Data dat, final int alphaSize, final int maxLen) { /* * Nodes and heap entries run from 1. Entry 0 for both the heap and * nodes is a sentinel. */ final int[] heap = dat.heap; final int[] weight = dat.weight; final int[] parent = dat.parent; for (int i = alphaSize; --i >= 0;) { weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8; } for (boolean tooLong = true; tooLong;) { tooLong = false; int nNodes = alphaSize; int nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (int i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; int zz = nHeap; final int tmp = heap[zz]; while (weight[tmp] < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } while (nHeap > 1) { final int n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; int yy = 0; int zz = 1; int tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; final int n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; yy = 0; zz = 1; tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; nNodes++; parent[n1] = parent[n2] = nNodes; final int weight_n1 = weight[n1]; final int weight_n2 = weight[n2]; weight[nNodes] = ((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff) : (weight_n2 & 0x000000ff))); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; tmp = 0; zz = nHeap; tmp = heap[zz]; final int weight_tmp = weight[tmp]; while (weight_tmp < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } for (int i = 1; i <= alphaSize; i++) { int j = 0; int k = i; for (int parent_k; (parent_k = parent[k]) >= 0;) { k = parent_k; j++; } len[i - 1] = (byte) j; if (j > maxLen) { tooLong = true; } } if (tooLong) { for (int i = 1; i < alphaSize; i++) { int j = weight[i] >> 8; j = 1 + (j >> 1); weight[i] = j << 8; } } } } /** * Index of the last char in the block, so the block size == last + 1. */ private int last; /** * Index in fmap[] of original string after sorting. */ private int origPtr; /** * Always: in the range 0 .. 9. The current block size is 100000 * this * number. */ private final int blockSize100k; private boolean blockRandomised; private int bsBuff; private int bsLive; private final CRC crc = new CRC(); private int nInUse; private int nMTF; /* * Used when sorting. If too many long comparisons happen, we stop sorting, * randomise the block slightly, and try again. */ private int workDone; private int workLimit; private boolean firstAttempt; private int currentChar = -1; private int runLength = 0; private int combinedCRC; private int allowableBlockSize; /** * All memory intensive stuff. */ private Data data; private OutputStream out; /** * Chooses a blocksize based on the given length of the data to compress. * * @param inputLength The length of the data which will be compressed by * CBZip2OutputStream. * @return The blocksize, between {@link #MIN_BLOCKSIZE} and * {@link #MAX_BLOCKSIZE} both inclusive. For a negative * inputLength this method returns MAX_BLOCKSIZE * always. */ public static int chooseBlockSize(final long inputLength) { return (inputLength > 0) ? (int) Math.min((inputLength / 132000) + 1, 9) : MAX_BLOCKSIZE; } /** * Constructs a new CBZip2OutputStream with a blocksize of 900k. *

* Attention: The caller is resonsible to write the two BZip2 magic * bytes "BZ" to the specified stream prior to calling this * constructor. *

* * @param out * * the destination stream. * @throws java.io.IOException if an I/O error occurs in the specified stream. * @throws NullPointerException if out == null. */ public CBZip2OutputStream(final OutputStream out) throws IOException { this(out, MAX_BLOCKSIZE); } /** * Constructs a new CBZip2OutputStream with specified blocksize. *

* Attention: The caller is resonsible to write the two BZip2 magic * bytes "BZ" to the specified stream prior to calling this * constructor. *

* * @param out the destination stream. * @param blockSize the blockSize as 100k units. * @throws java.io.IOException if an I/O error occurs in the specified stream. * @throws IllegalArgumentException if (blockSize < 1) || (blockSize > 9). * @throws NullPointerException if out == null. * @see #MIN_BLOCKSIZE * @see #MAX_BLOCKSIZE */ public CBZip2OutputStream(final OutputStream out, final int blockSize) throws IOException { if (blockSize < 1) { throw new IllegalArgumentException("blockSize(" + blockSize + ") < 1"); } if (blockSize > 9) { throw new IllegalArgumentException("blockSize(" + blockSize + ") > 9"); } this.blockSize100k = blockSize; this.out = out; init(); } @Override public void write(final int b) throws IOException { if (this.out == null) { throw new IOException("closed"); } write0(b); } private void writeRun() throws IOException { final int lastShadow = this.last; if (lastShadow < this.allowableBlockSize) { final int currentCharShadow = this.currentChar; final Data dataShadow = this.data; dataShadow.inUse[currentCharShadow] = true; final byte ch = (byte) currentCharShadow; int runLengthShadow = this.runLength; this.crc.updateCRC(currentCharShadow, runLengthShadow); switch (runLengthShadow) { case 1: dataShadow.block[lastShadow + 2] = ch; this.last = lastShadow + 1; break; case 2: dataShadow.block[lastShadow + 2] = ch; dataShadow.block[lastShadow + 3] = ch; this.last = lastShadow + 2; break; case 3: { final byte[] block = dataShadow.block; block[lastShadow + 2] = ch; block[lastShadow + 3] = ch; block[lastShadow + 4] = ch; this.last = lastShadow + 3; } break; default: { runLengthShadow -= 4; dataShadow.inUse[runLengthShadow] = true; final byte[] block = dataShadow.block; block[lastShadow + 2] = ch; block[lastShadow + 3] = ch; block[lastShadow + 4] = ch; block[lastShadow + 5] = ch; block[lastShadow + 6] = (byte) runLengthShadow; this.last = lastShadow + 5; } break; } } else { endBlock(); initBlock(); writeRun(); } } /** * Overriden to close the stream. */ @Override protected void finalize() throws Throwable { finish(); super.finalize(); } public void finish() throws IOException { if (out != null) { try { if (this.runLength > 0) { writeRun(); } this.currentChar = -1; endBlock(); endCompression(); } finally { this.out = null; this.data = null; } } } @Override public void close() throws IOException { if (out != null) { final OutputStream outShadow = this.out; finish(); outShadow.close(); } } @Override public void flush() throws IOException { final OutputStream outShadow = this.out; if (outShadow != null) { outShadow.flush(); } } private void init() throws IOException { // write magic: done by caller who created this stream // this.out.write('B'); // this.out.write('Z'); this.data = new Data(this.blockSize100k); /* * Write `magic' bytes h indicating file-format == huffmanised, followed * by a digit indicating blockSize100k. */ bsPutUByte('h'); bsPutUByte('0' + this.blockSize100k); this.combinedCRC = 0; initBlock(); } private void initBlock() { // blockNo++; this.crc.initialiseCRC(); this.last = -1; // ch = 0; final boolean[] inUse = this.data.inUse; for (int i = 256; --i >= 0;) { inUse[i] = false; } /* 20 is just a paranoia constant */ this.allowableBlockSize = (this.blockSize100k * BZip2Constants.baseBlockSize) - 20; } private void endBlock() throws IOException { final int blockCRC = this.crc.getFinalCRC(); this.combinedCRC = (this.combinedCRC << 1) | (this.combinedCRC >>> 31); this.combinedCRC ^= blockCRC; // empty block at end of file if (this.last == -1) { return; } /* sort the block and establish posn of original string */ blockSort(); /* * A 6-byte block header, the value chosen arbitrarily as 0x314159265359 * :-). A 32 bit value does not really give a strong enough guarantee * that the value will not appear by chance in the compressed * datastream. Worst-case probability of this event, for a 900k block, * is about 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 * bits. For a compressed file of size 100Gb -- about 100000 blocks -- * only a 48-bit marker will do. NB: normal compression/ decompression * donot rely on these statistical properties. They are only important * when trying to recover blocks from damaged files. */ bsPutUByte(0x31); bsPutUByte(0x41); bsPutUByte(0x59); bsPutUByte(0x26); bsPutUByte(0x53); bsPutUByte(0x59); /* Now the block's CRC, so it is in a known place. */ bsPutInt(blockCRC); /* Now a single bit indicating randomisation. */ if (this.blockRandomised) { bsW(1, 1); } else { bsW(1, 0); } /* Finally, block's contents proper. */ moveToFrontCodeAndSend(); } private void endCompression() throws IOException { /* * Now another magic 48-bit number, 0x177245385090, to indicate the end * of the last block. (sqrt(pi), if you want to know. I did want to use * e, but it contains too much repetition -- 27 18 28 18 28 46 -- for me * to feel statistically comfortable. Call me paranoid.) */ bsPutUByte(0x17); bsPutUByte(0x72); bsPutUByte(0x45); bsPutUByte(0x38); bsPutUByte(0x50); bsPutUByte(0x90); bsPutInt(this.combinedCRC); bsFinishedWithStream(); } /** * Returns the blocksize parameter specified at construction time. */ public final int getBlockSize() { return this.blockSize100k; } @Override public void write(final byte[] buf, int offs, final int len) throws IOException { if (offs < 0) { throw new IndexOutOfBoundsException("offs(" + offs + ") < 0."); } if (len < 0) { throw new IndexOutOfBoundsException("len(" + len + ") < 0."); } if (offs + len > buf.length) { throw new IndexOutOfBoundsException("offs(" + offs + ") + len(" + len + ") > buf.length(" + buf.length + ")."); } if (this.out == null) { throw new IOException("stream closed"); } for (final int hi = offs + len; offs < hi;) { write0(buf[offs]); offs++; } } private void write0(int b) throws IOException { if (this.currentChar != -1) { b &= 0xff; if (this.currentChar == b) { if (++this.runLength > 254) { writeRun(); this.currentChar = -1; this.runLength = 0; } // else nothing to do } else { writeRun(); this.runLength = 1; this.currentChar = b; } } else { this.currentChar = b & 0xff; this.runLength++; } } private static void hbAssignCodes(final int[] code, final byte[] length, final int minLen, final int maxLen, final int alphaSize) { int vec = 0; for (int n = minLen; n <= maxLen; n++) { for (int i = 0; i < alphaSize; i++) { if ((length[i] & 0xff) == n) { code[i] = vec; vec++; } } vec <<= 1; } } private void bsFinishedWithStream() throws IOException { while (this.bsLive > 0) { final int ch = this.bsBuff >> 24; this.out.write(ch); // write 8-bit this.bsBuff <<= 8; this.bsLive -= 8; } } private void bsW(final int n, final int v) throws IOException { final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } this.bsBuff = bsBuffShadow | (v << (32 - bsLiveShadow - n)); this.bsLive = bsLiveShadow + n; } private void bsPutUByte(final int c) throws IOException { bsW(8, c); } private void bsPutInt(final int u) throws IOException { bsW(8, (u >> 24) & 0xff); bsW(8, (u >> 16) & 0xff); bsW(8, (u >> 8) & 0xff); bsW(8, u & 0xff); } private void sendMTFValues() throws IOException { final byte[][] len = this.data.sendMTFValues_len; final int alphaSize = this.nInUse + 2; for (int t = N_GROUPS; --t >= 0;) { final byte[] len_t = len[t]; for (int v = alphaSize; --v >= 0;) { len_t[v] = GREATER_ICOST; } } /* Decide how many coding tables to use */ // assert (this.nMTF > 0) : this.nMTF; final int nGroups = (this.nMTF < 200) ? 2 : (this.nMTF < 600) ? 3 : (this.nMTF < 1200) ? 4 : (this.nMTF < 2400) ? 5 : 6; /* Generate an initial set of coding tables */ sendMTFValues0(nGroups, alphaSize); /* * Iterate up to N_ITERS times to improve the tables. */ final int nSelectors = sendMTFValues1(nGroups, alphaSize); /* Compute MTF values for the selectors. */ sendMTFValues2(nGroups, nSelectors); /* Assign actual codes for the tables. */ sendMTFValues3(nGroups, alphaSize); /* Transmit the mapping table. */ sendMTFValues4(); /* Now the selectors. */ sendMTFValues5(nGroups, nSelectors); /* Now the coding tables. */ sendMTFValues6(nGroups, alphaSize); /* And finally, the block data proper */ sendMTFValues7(nSelectors); } private void sendMTFValues0(final int nGroups, final int alphaSize) { final byte[][] len = this.data.sendMTFValues_len; final int[] mtfFreq = this.data.mtfFreq; int remF = this.nMTF; int gs = 0; for (int nPart = nGroups; nPart > 0; nPart--) { final int tFreq = remF / nPart; int ge = gs - 1; int aFreq = 0; for (final int a = alphaSize - 1; (aFreq < tFreq) && (ge < a);) { ge++; aFreq += mtfFreq[ge]; } if ((ge > gs) && (nPart != nGroups) && (nPart != 1) && (((nGroups - nPart) & 1) != 0)) { aFreq -= mtfFreq[ge]; ge--; } final byte[] len_np = len[nPart - 1]; for (int v = alphaSize; --v >= 0;) { if ((v >= gs) && (v <= ge)) { len_np[v] = LESSER_ICOST; } else { len_np[v] = GREATER_ICOST; } } gs = ge + 1; remF -= aFreq; } } private int sendMTFValues1(final int nGroups, final int alphaSize) { final Data dataShadow = this.data; final int[][] rfreq = dataShadow.sendMTFValues_rfreq; final int[] fave = dataShadow.sendMTFValues_fave; final short[] cost = dataShadow.sendMTFValues_cost; final char[] sfmap = dataShadow.sfmap; final byte[] selector = dataShadow.selector; final byte[][] len = dataShadow.sendMTFValues_len; final byte[] len_0 = len[0]; final byte[] len_1 = len[1]; final byte[] len_2 = len[2]; final byte[] len_3 = len[3]; final byte[] len_4 = len[4]; final byte[] len_5 = len[5]; final int nMTFShadow = this.nMTF; int nSelectors = 0; for (int iter = 0; iter < N_ITERS; iter++) { for (int t = nGroups; --t >= 0;) { fave[t] = 0; final int[] rfreqt = rfreq[t]; for (int i = alphaSize; --i >= 0;) { rfreqt[i] = 0; } } nSelectors = 0; for (int gs = 0; gs < this.nMTF;) { /* Set group start & end marks. */ /* * Calculate the cost of this group as coded by each of the * coding tables. */ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1); if (nGroups == N_GROUPS) { // unrolled version of the else-block short cost0 = 0; short cost1 = 0; short cost2 = 0; short cost3 = 0; short cost4 = 0; short cost5 = 0; for (int i = gs; i <= ge; i++) { final int icv = sfmap[i]; cost0 += len_0[icv] & 0xff; cost1 += len_1[icv] & 0xff; cost2 += len_2[icv] & 0xff; cost3 += len_3[icv] & 0xff; cost4 += len_4[icv] & 0xff; cost5 += len_5[icv] & 0xff; } cost[0] = cost0; cost[1] = cost1; cost[2] = cost2; cost[3] = cost3; cost[4] = cost4; cost[5] = cost5; } else { for (int t = nGroups; --t >= 0;) { cost[t] = 0; } for (int i = gs; i <= ge; i++) { final int icv = sfmap[i]; for (int t = nGroups; --t >= 0;) { cost[t] += len[t][icv] & 0xff; } } } /* * Find the coding table which is best for this group, and * record its identity in the selector table. */ int bt = -1; for (int t = nGroups, bc = 999999999; --t >= 0;) { final int cost_t = cost[t]; if (cost_t < bc) { bc = cost_t; bt = t; } } fave[bt]++; selector[nSelectors] = (byte) bt; nSelectors++; /* * Increment the symbol frequencies for the selected table. */ final int[] rfreq_bt = rfreq[bt]; for (int i = gs; i <= ge; i++) { rfreq_bt[sfmap[i]]++; } gs = ge + 1; } /* * Recompute the tables based on the accumulated frequencies. */ for (int t = 0; t < nGroups; t++) { hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20); } } return nSelectors; } private void sendMTFValues2(final int nGroups, final int nSelectors) { // assert (nGroups < 8) : nGroups; final Data dataShadow = this.data; final byte[] pos = dataShadow.sendMTFValues2_pos; for (int i = nGroups; --i >= 0;) { pos[i] = (byte) i; } for (int i = 0; i < nSelectors; i++) { final byte ll_i = dataShadow.selector[i]; byte tmp = pos[0]; int j = 0; while (ll_i != tmp) { j++; final byte tmp2 = tmp; tmp = pos[j]; pos[j] = tmp2; } pos[0] = tmp; dataShadow.selectorMtf[i] = (byte) j; } } private void sendMTFValues3(final int nGroups, final int alphaSize) { final int[][] code = this.data.sendMTFValues_code; final byte[][] len = this.data.sendMTFValues_len; for (int t = 0; t < nGroups; t++) { int minLen = 32; int maxLen = 0; final byte[] len_t = len[t]; for (int i = alphaSize; --i >= 0;) { final int l = len_t[i] & 0xff; if (l > maxLen) { maxLen = l; } if (l < minLen) { minLen = l; } } // assert (maxLen <= 20) : maxLen; // assert (minLen >= 1) : minLen; hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize); } } private void sendMTFValues4() throws IOException { final boolean[] inUse = this.data.inUse; final boolean[] inUse16 = this.data.sentMTFValues4_inUse16; for (int i = 16; --i >= 0;) { inUse16[i] = false; final int i16 = i * 16; for (int j = 16; --j >= 0;) { if (inUse[i16 + j]) { inUse16[i] = true; } } } for (int i = 0; i < 16; i++) { bsW(1, inUse16[i] ? 1 : 0); } final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int i = 0; i < 16; i++) { if (inUse16[i]) { final int i16 = i * 16; for (int j = 0; j < 16; j++) { // inlined: bsW(1, inUse[i16 + j] ? 1 : 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } if (inUse[i16 + j]) { bsBuffShadow |= 1 << (32 - bsLiveShadow - 1); } bsLiveShadow++; } } } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues5(final int nGroups, final int nSelectors) throws IOException { bsW(3, nGroups); bsW(15, nSelectors); final OutputStream outShadow = this.out; final byte[] selectorMtf = this.data.selectorMtf; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int i = 0; i < nSelectors; i++) { for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) { // inlined: bsW(1, 1); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 1 << (32 - bsLiveShadow - 1); bsLiveShadow++; } // inlined: bsW(1, 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1); bsLiveShadow++; } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues6(final int nGroups, final int alphaSize) throws IOException { final byte[][] len = this.data.sendMTFValues_len; final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int t = 0; t < nGroups; t++) { final byte[] len_t = len[t]; int curr = len_t[0] & 0xff; // inlined: bsW(5, curr); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= curr << (32 - bsLiveShadow - 5); bsLiveShadow += 5; for (int i = 0; i < alphaSize; i++) { final int lti = len_t[i] & 0xff; while (curr < lti) { // inlined: bsW(2, 2); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 2 << (32 - bsLiveShadow - 2); bsLiveShadow += 2; curr++; /* 10 */ } while (curr > lti) { // inlined: bsW(2, 3); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 3 << (32 - bsLiveShadow - 2); bsLiveShadow += 2; curr--; /* 11 */ } // inlined: bsW(1, 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1); bsLiveShadow++; } } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues7(final int nSelectors) throws IOException { final Data dataShadow = this.data; final byte[][] len = dataShadow.sendMTFValues_len; final int[][] code = dataShadow.sendMTFValues_code; final OutputStream outShadow = this.out; final byte[] selector = dataShadow.selector; final char[] sfmap = dataShadow.sfmap; final int nMTFShadow = this.nMTF; int selCtr = 0; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int gs = 0; gs < nMTFShadow;) { final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1); final int selector_selCtr = selector[selCtr] & 0xff; final int[] code_selCtr = code[selector_selCtr]; final byte[] len_selCtr = len[selector_selCtr]; while (gs <= ge) { final int sfmap_i = sfmap[gs]; // // inlined: bsW(len_selCtr[sfmap_i] & 0xff, // code_selCtr[sfmap_i]); // while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } final int n = len_selCtr[sfmap_i] & 0xFF; bsBuffShadow |= code_selCtr[sfmap_i] << (32 - bsLiveShadow - n); bsLiveShadow += n; gs++; } gs = ge + 1; selCtr++; } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void moveToFrontCodeAndSend() throws IOException { bsW(24, this.origPtr); generateMTFValues(); sendMTFValues(); } /** * This is the most hammered method of this class. *

* This is the version using unrolled loops. Normally I never use such ones * in Java code. The unrolling has shown a noticable performance improvement * on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the * JIT compiler of the vm. *

*/ private boolean mainSimpleSort(final Data dataShadow, final int lo, final int hi, final int d) { final int bigN = hi - lo + 1; if (bigN < 2) { return this.firstAttempt && (this.workDone > this.workLimit); } int hp = 0; while (INCS[hp] < bigN) { hp++; } final int[] fmap = dataShadow.fmap; final char[] quadrant = dataShadow.quadrant; final byte[] block = dataShadow.block; final int lastShadow = this.last; final int lastPlus1 = lastShadow + 1; final boolean firstAttemptShadow = this.firstAttempt; final int workLimitShadow = this.workLimit; int workDoneShadow = this.workDone; // Following block contains unrolled code which could be shortened by // coding it in additional loops. HP: while (--hp >= 0) { final int h = INCS[hp]; final int mj = lo + h - 1; for (int i = lo + h; i <= hi;) { // copy for (int k = 3; (i <= hi) && (--k >= 0); i++) { final int v = fmap[i]; final int vd = v + d; int j = i; // for (int a; // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd, // block, quadrant, lastShadow); // j -= h) { // fmap[j] = a; // } // // unrolled version: // start inline mainGTU boolean onceRunned = false; int a = 0; HAMMER: while (true) { if (onceRunned) { fmap[j] = a; j -= h; if (j <= mj) { break HAMMER; } } else { onceRunned = true; } a = fmap[j - h]; int i1 = a + d; int i2 = vd; // following could be done in a loop, but // unrolled it for performance: if (block[i1 + 1] == block[i2 + 1]) { if (block[i1 + 2] == block[i2 + 2]) { if (block[i1 + 3] == block[i2 + 3]) { if (block[i1 + 4] == block[i2 + 4]) { if (block[i1 + 5] == block[i2 + 5]) { if (block[(i1 += 6)] == block[(i2 += 6)]) { int x = lastShadow; X: while (x > 0) { x -= 4; if (block[i1 + 1] == block[i2 + 1]) { if (quadrant[i1] == quadrant[i2]) { if (block[i1 + 2] == block[i2 + 2]) { if (quadrant[i1 + 1] == quadrant[i2 + 1]) { if (block[i1 + 3] == block[i2 + 3]) { if (quadrant[i1 + 2] == quadrant[i2 + 2]) { if (block[i1 + 4] == block[i2 + 4]) { if (quadrant[i1 + 3] == quadrant[i2 + 3]) { i1 += 4; if (i1 >= lastPlus1) { i1 -= lastPlus1; } i2 += 4; if (i2 >= lastPlus1) { i2 -= lastPlus1; } workDoneShadow++; continue X; } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1] > quadrant[i2])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) { continue HAMMER; } else { break HAMMER; } } break HAMMER; } // while x > 0 else if ((block[i1] & 0xff) > (block[i2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) { continue HAMMER; } else { break HAMMER; } } if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) { continue HAMMER; } break HAMMER; } // HAMMER // end inline mainGTU fmap[j] = v; } if (firstAttemptShadow && (i <= hi) && (workDoneShadow > workLimitShadow)) { break HP; } } } this.workDone = workDoneShadow; return firstAttemptShadow && (workDoneShadow > workLimitShadow); } private static void vswap(final int[] fmap, int p1, int p2, int n) { n += p1; while (p1 < n) { final int t = fmap[p1]; fmap[p1] = fmap[p2]; p1++; fmap[p2] = t; p2++; } } private static byte med3(final byte a, final byte b, final byte c) { return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c : a); } private void blockSort() { this.workLimit = WORK_FACTOR * this.last; this.workDone = 0; this.blockRandomised = false; this.firstAttempt = true; mainSort(); if (this.firstAttempt && (this.workDone > this.workLimit)) { randomiseBlock(); this.workLimit = this.workDone = 0; this.firstAttempt = false; mainSort(); } final int[] fmap = this.data.fmap; this.origPtr = -1; for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) { if (fmap[i] == 0) { this.origPtr = i; break; } } // assert (this.origPtr != -1) : this.origPtr; } /** * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2 */ private void mainQSort3(final Data dataShadow, final int loSt, final int hiSt, final int dSt) { final int[] stack_ll = dataShadow.stack_ll; final int[] stack_hh = dataShadow.stack_hh; final int[] stack_dd = dataShadow.stack_dd; final int[] fmap = dataShadow.fmap; final byte[] block = dataShadow.block; stack_ll[0] = loSt; stack_hh[0] = hiSt; stack_dd[0] = dSt; for (int sp = 1; --sp >= 0;) { final int lo = stack_ll[sp]; final int hi = stack_hh[sp]; final int d = stack_dd[sp]; if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) { if (mainSimpleSort(dataShadow, lo, hi, d)) { return; } } else { final int d1 = d + 1; final int med = med3(block[fmap[lo] + d1], block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff; int unLo = lo; int unHi = hi; int ltLo = lo; int gtHi = hi; while (true) { while (unLo <= unHi) { final int n = (block[fmap[unLo] + d1] & 0xff) - med; if (n == 0) { final int temp = fmap[unLo]; fmap[unLo++] = fmap[ltLo]; fmap[ltLo++] = temp; } else if (n < 0) { unLo++; } else { break; } } while (unLo <= unHi) { final int n = (block[fmap[unHi] + d1] & 0xff) - med; if (n == 0) { final int temp = fmap[unHi]; fmap[unHi--] = fmap[gtHi]; fmap[gtHi--] = temp; } else if (n > 0) { unHi--; } else { break; } } if (unLo > unHi) { break; } final int temp = fmap[unLo]; fmap[unLo] = fmap[unHi]; unLo++; fmap[unHi] = temp; unHi--; } if (gtHi < ltLo) { stack_ll[sp] = lo; stack_hh[sp] = hi; stack_dd[sp] = d1; } else { int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo) : (unLo - ltLo); vswap(fmap, lo, unLo - n, n); int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi) : (gtHi - unHi); vswap(fmap, unLo, hi - m + 1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; stack_ll[sp] = lo; stack_hh[sp] = n; stack_dd[sp] = d; sp++; stack_ll[sp] = n + 1; stack_hh[sp] = m - 1; stack_dd[sp] = d1; sp++; stack_ll[sp] = m; stack_hh[sp] = hi; stack_dd[sp] = d; } sp++; } } } private void mainSort() { final Data dataShadow = this.data; final int[] runningOrder = dataShadow.mainSort_runningOrder; final int[] copy = dataShadow.mainSort_copy; final boolean[] bigDone = dataShadow.mainSort_bigDone; final int[] ftab = dataShadow.ftab; final byte[] block = dataShadow.block; final int[] fmap = dataShadow.fmap; final char[] quadrant = dataShadow.quadrant; final int lastShadow = this.last; final int workLimitShadow = this.workLimit; final boolean firstAttemptShadow = this.firstAttempt; // Set up the 2-byte frequency table for (int i = 65537; --i >= 0;) { ftab[i] = 0; } /* * In the various block-sized structures, live data runs from 0 to * last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area * for block. */ for (int i = 0; i < NUM_OVERSHOOT_BYTES; i++) { block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1]; } for (int i = lastShadow + NUM_OVERSHOOT_BYTES + 1; --i >= 0;) { quadrant[i] = 0; } block[0] = block[lastShadow + 1]; // Complete the initial radix sort: int c1 = block[0] & 0xff; for (int i = 0; i <= lastShadow; i++) { final int c2 = block[i + 1] & 0xff; ftab[(c1 << 8) + c2]++; c1 = c2; } for (int i = 1; i <= 65536; i++) { ftab[i] += ftab[i - 1]; } c1 = block[1] & 0xff; for (int i = 0; i < lastShadow; i++) { final int c2 = block[i + 2] & 0xff; fmap[--ftab[(c1 << 8) + c2]] = i; c1 = c2; } fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow; /* * Now ftab contains the first loc of every small bucket. Calculate the * running order, from smallest to largest big bucket. */ for (int i = 256; --i >= 0;) { bigDone[i] = false; runningOrder[i] = i; } for (int h = 364; h != 1;) { h /= 3; for (int i = h; i <= 255; i++) { final int vv = runningOrder[i]; final int a = ftab[(vv + 1) << 8] - ftab[vv << 8]; final int b = h - 1; int j = i; for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j - h]) { runningOrder[j] = ro; j -= h; if (j <= b) { break; } } runningOrder[j] = vv; } } /* * The main sorting loop. */ for (int i = 0; i <= 255; i++) { /* * Process big buckets, starting with the least full. */ final int ss = runningOrder[i]; // Step 1: /* * Complete the big bucket [ss] by quicksorting any unsorted small * buckets [ss, j]. Hopefully previous pointer-scanning phases have * already completed many of the small buckets [ss, j], so we don't * have to sort them at all. */ for (int j = 0; j <= 255; j++) { final int sb = (ss << 8) + j; final int ftab_sb = ftab[sb]; if ((ftab_sb & SETMASK) != SETMASK) { final int lo = ftab_sb & CLEARMASK; final int hi = (ftab[sb + 1] & CLEARMASK) - 1; if (hi > lo) { mainQSort3(dataShadow, lo, hi, 2); if (firstAttemptShadow && (this.workDone > workLimitShadow)) { return; } } ftab[sb] = ftab_sb | SETMASK; } } // Step 2: // Now scan this big bucket so as to synthesise the // sorted order for small buckets [t, ss] for all t != ss. for (int j = 0; j <= 255; j++) { copy[j] = ftab[(j << 8) + ss] & CLEARMASK; } for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) { final int fmap_j = fmap[j]; c1 = block[fmap_j] & 0xff; if (!bigDone[c1]) { fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1); copy[c1]++; } } for (int j = 256; --j >= 0;) { ftab[(j << 8) + ss] |= SETMASK; } // Step 3: /* * The ss big bucket is now done. Record this fact, and update the * quadrant descriptors. Remember to update quadrants in the * overshoot area too, if necessary. The "if (i < 255)" test merely * skips this updating for the last bucket processed, since updating * for the last bucket is pointless. */ bigDone[ss] = true; if (i < 255) { final int bbStart = ftab[ss << 8] & CLEARMASK; final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart; int shifts = 0; while ((bbSize >> shifts) > 65534) { shifts++; } for (int j = 0; j < bbSize; j++) { final int a2update = fmap[bbStart + j]; final char qVal = (char) (j >> shifts); quadrant[a2update] = qVal; if (a2update < NUM_OVERSHOOT_BYTES) { quadrant[a2update + lastShadow + 1] = qVal; } } } } } private void randomiseBlock() { final boolean[] inUse = this.data.inUse; final byte[] block = this.data.block; final int lastShadow = this.last; for (int i = 256; --i >= 0;) { inUse[i] = false; } int rNToGo = 0; int rTPos = 0; for (int i = 0, j = 1; i <= lastShadow; i = j, j++) { if (rNToGo == 0) { rNToGo = (char) BZip2Constants.rNums[rTPos]; if (++rTPos == 512) { rTPos = 0; } } rNToGo--; block[j] ^= ((rNToGo == 1) ? 1 : 0); // handle 16 bit signed numbers inUse[block[j] & 0xff] = true; } this.blockRandomised = true; } private void generateMTFValues() { final int lastShadow = this.last; final Data dataShadow = this.data; final boolean[] inUse = dataShadow.inUse; final byte[] block = dataShadow.block; final int[] fmap = dataShadow.fmap; final char[] sfmap = dataShadow.sfmap; final int[] mtfFreq = dataShadow.mtfFreq; final byte[] unseqToSeq = dataShadow.unseqToSeq; final byte[] yy = dataShadow.generateMTFValues_yy; // make maps int nInUseShadow = 0; for (int i = 0; i < 256; i++) { if (inUse[i]) { unseqToSeq[i] = (byte) nInUseShadow; nInUseShadow++; } } this.nInUse = nInUseShadow; final int eob = nInUseShadow + 1; for (int i = eob; i >= 0; i--) { mtfFreq[i] = 0; } for (int i = nInUseShadow; --i >= 0;) { yy[i] = (byte) i; } int wr = 0; int zPend = 0; for (int i = 0; i <= lastShadow; i++) { final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff]; byte tmp = yy[0]; int j = 0; while (ll_i != tmp) { j++; final byte tmp2 = tmp; tmp = yy[j]; yy[j] = tmp2; } yy[0] = tmp; if (j == 0) { zPend++; } else { if (zPend > 0) { zPend--; while (true) { if ((zPend & 1) == 0) { sfmap[wr] = RUNA; wr++; mtfFreq[RUNA]++; } else { sfmap[wr] = RUNB; wr++; mtfFreq[RUNB]++; } if (zPend < 2) { break; } zPend = (zPend - 2) >> 1; } zPend = 0; } sfmap[wr] = (char) (j + 1); wr++; mtfFreq[j + 1]++; } } if (zPend > 0) { zPend--; while (true) { if ((zPend & 1) == 0) { sfmap[wr] = RUNA; wr++; mtfFreq[RUNA]++; } else { sfmap[wr] = RUNB; wr++; mtfFreq[RUNB]++; } if (zPend < 2) { break; } zPend = (zPend - 2) >> 1; } } sfmap[wr] = (char) eob; mtfFreq[eob]++; this.nMTF = wr + 1; } private static final class Data extends Object { // with blockSize 900k final boolean[] inUse = new boolean[256]; // 256 byte final byte[] unseqToSeq = new byte[256]; // 256 byte final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte final byte[] generateMTFValues_yy = new byte[256]; // 256 byte final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548 // byte final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 // byte final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 // byte final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte final int[] stack_ll = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] stack_hh = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] mainSort_runningOrder = new int[256]; // 1024 byte final int[] mainSort_copy = new int[256]; // 1024 byte final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte final int[] ftab = new int[65537]; // 262148 byte // ------------ // 333408 byte final byte[] block; // 900021 byte final int[] fmap; // 3600000 byte final char[] sfmap; // 3600000 byte // ------------ // 8433529 byte // ============ /** * Array instance identical to sfmap, both are used only * temporarily and indepently, so we do not need to allocate * additional memory. */ final char[] quadrant; Data(final int blockSize100k) { final int n = blockSize100k * BZip2Constants.baseBlockSize; this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)]; this.fmap = new int[n]; this.sfmap = new char[2 * n]; this.quadrant = this.sfmap; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy