org.codelibs.elasticsearch.langfield.detect.util.LangProfile Maven / Gradle / Ivy
package org.codelibs.elasticsearch.langfield.detect.util;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import com.fasterxml.jackson.annotation.JsonProperty;
/**
* {@link LangProfile} is a Language Profile Class.
* Users don't use this class directly.
*
* @author Nakatani Shuyo
* @author shinsuke
*/
public class LangProfile {
private static final int MINIMUM_FREQ = 2;
private static final int LESS_FREQ_RATIO = 100000;
@JsonProperty("name")
public String name = null;
@JsonProperty("freq")
public Map freq = new HashMap<>();
@JsonProperty("n_words")
public int[] nWords = new int[NGram.N_GRAM];
public LangProfile() {
}
/**
* Normal Constructor
* @param name language name
*/
public LangProfile(final String name) {
this.name = name;
}
/**
* Add n-gram to profile
* @param gram n-gram string
*/
public void add(final String gram) {
if (name == null || gram == null) {
return; // Illegal
}
final int len = gram.length();
if (len < 1 || len > NGram.N_GRAM) {
return; // Illegal
}
++nWords[len - 1];
if (freq.containsKey(gram)) {
freq.put(gram, freq.get(gram) + 1);
} else {
freq.put(gram, 1);
}
}
/**
* Eliminate below less frequency n-grams and noise Latin alphabets
*/
public void omitLessFreq() {
if (name == null) {
return; // Illegal
}
int threshold = nWords[0] / LESS_FREQ_RATIO;
if (threshold < MINIMUM_FREQ) {
threshold = MINIMUM_FREQ;
}
final Set keys = freq.keySet();
int roman = 0;
for (final Iterator i = keys.iterator(); i.hasNext();) {
final String key = i.next();
final int count = freq.get(key);
if (count <= threshold) {
nWords[key.length() - 1] -= count;
i.remove();
} else if (key.matches("^[A-Za-z]$")) {
roman += count;
}
}
// roman check
if (roman < nWords[0] / 3) {
final Set keys2 = freq.keySet();
for (final Iterator i = keys2.iterator(); i.hasNext();) {
final String key = i.next();
if (key.matches(".*[A-Za-z].*")) {
nWords[key.length() - 1] -= freq.get(key);
i.remove();
}
}
}
}
/**
* Update the language profile with (fragmented) text.
* Extract n-grams from text and add their frequency into the profile.
* @param text (fragmented) text to extract n-grams
*/
public void update(String text) {
if (text == null) {
return;
}
text = NGram.normalize_vi(text);
final NGram gram = new NGram();
for (int i = 0; i < text.length(); ++i) {
gram.addChar(text.charAt(i));
for (int n = 1; n <= NGram.N_GRAM; ++n) {
add(gram.get(n));
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy