com.o19s.es.ltr.ranker.LogLtrRanker Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch-learning-to-rank Show documentation
Show all versions of elasticsearch-learning-to-rank Show documentation
Learing to Rank Query w/ RankLib Models
/*
* Copyright [2017] Wikimedia Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.o19s.es.ltr.ranker;
public class LogLtrRanker implements LtrRanker {
private final LogConsumer logger;
private final LtrRanker ranker;
public LogLtrRanker(LtrRanker ranker, LogConsumer consumer) {
this.ranker = ranker;
this.logger = consumer;
}
public LogLtrRanker(LogConsumer consumer, int modelSize) {
this.ranker = new NullRanker(modelSize);
this.logger = consumer;
}
@Override
public String name() {
return "log(" + ranker.name() + ")";
}
@Override
public FeatureVector newFeatureVector(FeatureVector reuse) {
final VectorWrapper wrapper;
if (reuse == null) {
wrapper = new VectorWrapper(logger);
} else {
assert reuse instanceof VectorWrapper;
wrapper = (VectorWrapper) reuse;
}
wrapper.reset(ranker);
return wrapper;
}
@Override
public float score(FeatureVector point) {
assert point instanceof VectorWrapper;
return ranker.score(((VectorWrapper) point).inner);
}
private static class VectorWrapper implements FeatureVector {
private FeatureVector inner;
private final LogConsumer logger;
VectorWrapper(LogConsumer consumer) {
this.logger = consumer;
}
@Override
public void setFeatureScore(int featureId, float score) {
inner.setFeatureScore(featureId, score);
logger.accept(featureId, score);
}
@Override
public float getFeatureScore(int featureId) {
return inner.getFeatureScore(featureId);
}
void reset(LtrRanker ranker) {
this.inner = ranker.newFeatureVector(inner);
logger.reset();
}
}
@FunctionalInterface
public interface LogConsumer {
void accept(int featureOrdinal, float score);
default void reset() {}
}
}