com.o19s.es.explore.StatisticsHelper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch-learning-to-rank Show documentation
Show all versions of elasticsearch-learning-to-rank Show documentation
Learing to Rank Query w/ RankLib Models
/*
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.o19s.es.explore;
import java.util.ArrayList;
public class StatisticsHelper {
private final ArrayList data = new ArrayList<>(10);
private float min = Float.MAX_VALUE;
private float max = 0.0f;
StatisticsHelper() {
}
public void add(float val) {
data.add(val);
if(val < this.min) {
this.min = val;
}
if(val > this.max) {
this.max = val;
}
}
public float getMax() {
assert !data.isEmpty();
return max;
}
public float getMin() {
assert !data.isEmpty();
return min;
}
public float getMean() {
assert !data.isEmpty();
return getSum() / data.size();
}
public float getSum() {
assert !data.isEmpty();
float sum = 0.0f;
for(float a : data) {
sum += a;
}
return sum;
}
public float getVariance() {
assert !data.isEmpty();
float mean = getMean();
float temp = 0.0f;
for(float a : data)
temp += (a-mean)*(a-mean);
return temp/data.size();
}
public float getStdDev() {
assert !data.isEmpty();
return (float) Math.sqrt(getVariance());
}
}