All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.codelibs.elasticsearch.taste.recommender.GenericItemBasedRecommender Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.codelibs.elasticsearch.taste.recommender;

import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.Callable;

import org.codelibs.elasticsearch.taste.common.FastIDSet;
import org.codelibs.elasticsearch.taste.common.FullRunningAverage;
import org.codelibs.elasticsearch.taste.common.LongPair;
import org.codelibs.elasticsearch.taste.common.RefreshHelper;
import org.codelibs.elasticsearch.taste.common.Refreshable;
import org.codelibs.elasticsearch.taste.common.RunningAverage;
import org.codelibs.elasticsearch.taste.model.DataModel;
import org.codelibs.elasticsearch.taste.model.PreferenceArray;
import org.codelibs.elasticsearch.taste.similarity.ItemSimilarity;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.base.Preconditions;

/**
 * 

* A simple {@link org.codelibs.elasticsearch.taste.recommender.Recommender} which uses a given * {@link org.codelibs.elasticsearch.taste.model.DataModel} and * {@link org.codelibs.elasticsearch.taste.similarity.ItemSimilarity} to produce recommendations. This class * represents Taste's support for item-based recommenders. *

* *

* The {@link org.codelibs.elasticsearch.taste.similarity.ItemSimilarity} is the most important point to discuss * here. Item-based recommenders are useful because they can take advantage of something to be very fast: they * base their computations on item similarity, not user similarity, and item similarity is relatively static. * It can be precomputed, instead of re-computed in real time. *

* *

* Thus it's strongly recommended that you use * {@link org.codelibs.elasticsearch.taste.similarity.GenericItemSimilarity} with pre-computed similarities if * you're going to use this class. You can use * {@link org.codelibs.elasticsearch.taste.similarity.PearsonCorrelationSimilarity} too, which computes * similarities in real-time, but will probably find this painfully slow for large amounts of data. *

*/ public class GenericItemBasedRecommender extends AbstractRecommender implements ItemBasedRecommender { private static final Logger log = LoggerFactory .getLogger(GenericItemBasedRecommender.class); private final ItemSimilarity similarity; private final MostSimilarItemsCandidateItemsStrategy mostSimilarItemsCandidateItemsStrategy; private final RefreshHelper refreshHelper; private EstimatedPreferenceCapper capper; private static final boolean EXCLUDE_ITEM_IF_NOT_SIMILAR_TO_ALL_BY_DEFAULT = true; public GenericItemBasedRecommender( final DataModel dataModel, final ItemSimilarity similarity, final CandidateItemsStrategy candidateItemsStrategy, final MostSimilarItemsCandidateItemsStrategy mostSimilarItemsCandidateItemsStrategy) { super(dataModel, candidateItemsStrategy); Preconditions.checkArgument(similarity != null, "similarity is null"); this.similarity = similarity; Preconditions.checkArgument( mostSimilarItemsCandidateItemsStrategy != null, "mostSimilarItemsCandidateItemsStrategy is null"); this.mostSimilarItemsCandidateItemsStrategy = mostSimilarItemsCandidateItemsStrategy; refreshHelper = new RefreshHelper(new Callable() { @Override public Void call() { capper = buildCapper(); return null; } }); refreshHelper.addDependency(dataModel); refreshHelper.addDependency(similarity); refreshHelper.addDependency(candidateItemsStrategy); refreshHelper.addDependency(mostSimilarItemsCandidateItemsStrategy); capper = buildCapper(); } public GenericItemBasedRecommender(final DataModel dataModel, final ItemSimilarity similarity) { this(dataModel, similarity, AbstractRecommender .getDefaultCandidateItemsStrategy(), getDefaultMostSimilarItemsCandidateItemsStrategy()); } protected static MostSimilarItemsCandidateItemsStrategy getDefaultMostSimilarItemsCandidateItemsStrategy() { return new PreferredItemsNeighborhoodCandidateItemsStrategy(); } public ItemSimilarity getSimilarity() { return similarity; } @Override public List recommend(final long userID, final int howMany, final IDRescorer rescorer) { Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1"); log.debug("Recommending items for user ID '{}'", userID); final PreferenceArray preferencesFromUser = getDataModel() .getPreferencesFromUser(userID); if (preferencesFromUser.length() == 0) { return Collections.emptyList(); } final FastIDSet possibleItemIDs = getAllOtherItems(userID, preferencesFromUser); final TopItems.Estimator estimator = new Estimator(userID, preferencesFromUser); final List topItems = TopItems.getTopItems(howMany, possibleItemIDs.iterator(), rescorer, estimator); log.debug("Recommendations are: {}", topItems); return topItems; } @Override public float estimatePreference(final long userID, final long itemID) { final PreferenceArray preferencesFromUser = getDataModel() .getPreferencesFromUser(userID); final Float actualPref = getPreferenceForItem(preferencesFromUser, itemID); if (actualPref != null) { return actualPref; } return doEstimatePreference(userID, preferencesFromUser, itemID); } private static Float getPreferenceForItem( final PreferenceArray preferencesFromUser, final long itemID) { final int size = preferencesFromUser.length(); for (int i = 0; i < size; i++) { if (preferencesFromUser.getItemID(i) == itemID) { return preferencesFromUser.getValue(i); } } return null; } @Override public List mostSimilarItems(final long itemID, final int howMany) { return mostSimilarItems(itemID, howMany, null); } @Override public List mostSimilarItems(final long itemID, final int howMany, final Rescorer rescorer) { final TopItems.Estimator estimator = new MostSimilarEstimator( itemID, similarity, rescorer); return doMostSimilarItems(new long[] { itemID }, howMany, estimator); } @Override public List mostSimilarItems(final long[] itemIDs, final int howMany) { final TopItems.Estimator estimator = new MultiMostSimilarEstimator( itemIDs, similarity, null, EXCLUDE_ITEM_IF_NOT_SIMILAR_TO_ALL_BY_DEFAULT); return doMostSimilarItems(itemIDs, howMany, estimator); } @Override public List mostSimilarItems(final long[] itemIDs, final int howMany, final Rescorer rescorer) { final TopItems.Estimator estimator = new MultiMostSimilarEstimator( itemIDs, similarity, rescorer, EXCLUDE_ITEM_IF_NOT_SIMILAR_TO_ALL_BY_DEFAULT); return doMostSimilarItems(itemIDs, howMany, estimator); } @Override public List mostSimilarItems(final long[] itemIDs, final int howMany, final boolean excludeItemIfNotSimilarToAll) { final TopItems.Estimator estimator = new MultiMostSimilarEstimator( itemIDs, similarity, null, excludeItemIfNotSimilarToAll); return doMostSimilarItems(itemIDs, howMany, estimator); } @Override public List mostSimilarItems(final long[] itemIDs, final int howMany, final Rescorer rescorer, final boolean excludeItemIfNotSimilarToAll) { final TopItems.Estimator estimator = new MultiMostSimilarEstimator( itemIDs, similarity, rescorer, excludeItemIfNotSimilarToAll); return doMostSimilarItems(itemIDs, howMany, estimator); } @Override public List recommendedBecause(final long userID, final long itemID, final int howMany) { Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1"); final DataModel model = getDataModel(); final TopItems.Estimator estimator = new RecommendedBecauseEstimator( userID, itemID); final PreferenceArray prefs = model.getPreferencesFromUser(userID); final int size = prefs.length(); final FastIDSet allUserItems = new FastIDSet(size); for (int i = 0; i < size; i++) { allUserItems.add(prefs.getItemID(i)); } allUserItems.remove(itemID); return TopItems.getTopItems(howMany, allUserItems.iterator(), null, estimator); } private List doMostSimilarItems(final long[] itemIDs, final int howMany, final TopItems.Estimator estimator) { final FastIDSet possibleItemIDs = mostSimilarItemsCandidateItemsStrategy .getCandidateItems(itemIDs, getDataModel()); return TopItems.getTopItems(howMany, possibleItemIDs.iterator(), null, estimator); } protected float doEstimatePreference(final long userID, final PreferenceArray preferencesFromUser, final long itemID) { double preference = 0.0; double totalSimilarity = 0.0; int count = 0; final double[] similarities = similarity.itemSimilarities(itemID, preferencesFromUser.getIDs()); for (int i = 0; i < similarities.length; i++) { final double theSimilarity = similarities[i]; if (!Double.isNaN(theSimilarity)) { // Weights can be negative! preference += theSimilarity * preferencesFromUser.getValue(i); totalSimilarity += theSimilarity; count++; } } // Throw out the estimate if it was based on no data points, of course, but also if based on // just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment. // The reason is that in this case the estimate is, simply, the user's rating for one item // that happened to have a defined similarity. The similarity score doesn't matter, and that // seems like a bad situation. if (count <= 1) { return Float.NaN; } float estimate = (float) (preference / totalSimilarity); if (capper != null) { estimate = capper.capEstimate(estimate); } return estimate; } @Override public void refresh(final Collection alreadyRefreshed) { refreshHelper.refresh(alreadyRefreshed); } @Override public String toString() { return "GenericItemBasedRecommender[similarity:" + similarity + ']'; } private EstimatedPreferenceCapper buildCapper() { final DataModel dataModel = getDataModel(); if (Float.isNaN(dataModel.getMinPreference()) && Float.isNaN(dataModel.getMaxPreference())) { return null; } else { return new EstimatedPreferenceCapper(dataModel); } } public static class MostSimilarEstimator implements TopItems.Estimator { private final long toItemID; private final ItemSimilarity similarity; private final Rescorer rescorer; public MostSimilarEstimator(final long toItemID, final ItemSimilarity similarity, final Rescorer rescorer) { this.toItemID = toItemID; this.similarity = similarity; this.rescorer = rescorer; } @Override public double estimate(final Long itemID) { final LongPair pair = new LongPair(toItemID, itemID); if (rescorer != null && rescorer.isFiltered(pair)) { return Double.NaN; } final double originalEstimate = similarity.itemSimilarity(toItemID, itemID); return rescorer == null ? originalEstimate : rescorer.rescore(pair, originalEstimate); } } private final class Estimator implements TopItems.Estimator { private final long userID; private final PreferenceArray preferencesFromUser; private Estimator(final long userID, final PreferenceArray preferencesFromUser) { this.userID = userID; this.preferencesFromUser = preferencesFromUser; } @Override public double estimate(final Long itemID) { return doEstimatePreference(userID, preferencesFromUser, itemID); } } private static final class MultiMostSimilarEstimator implements TopItems.Estimator { private final long[] toItemIDs; private final ItemSimilarity similarity; private final Rescorer rescorer; private final boolean excludeItemIfNotSimilarToAll; private MultiMostSimilarEstimator(final long[] toItemIDs, final ItemSimilarity similarity, final Rescorer rescorer, final boolean excludeItemIfNotSimilarToAll) { this.toItemIDs = toItemIDs; this.similarity = similarity; this.rescorer = rescorer; this.excludeItemIfNotSimilarToAll = excludeItemIfNotSimilarToAll; } @Override public double estimate(final Long itemID) { final RunningAverage average = new FullRunningAverage(); final double[] similarities = similarity.itemSimilarities(itemID, toItemIDs); for (int i = 0; i < toItemIDs.length; i++) { final long toItemID = toItemIDs[i]; final LongPair pair = new LongPair(toItemID, itemID); if (rescorer != null && rescorer.isFiltered(pair)) { continue; } double estimate = similarities[i]; if (rescorer != null) { estimate = rescorer.rescore(pair, estimate); } if (excludeItemIfNotSimilarToAll || !Double.isNaN(estimate)) { average.addDatum(estimate); } } final double averageEstimate = average.getAverage(); return averageEstimate == 0 ? Double.NaN : averageEstimate; } } private final class RecommendedBecauseEstimator implements TopItems.Estimator { private final long userID; private final long recommendedItemID; private RecommendedBecauseEstimator(final long userID, final long recommendedItemID) { this.userID = userID; this.recommendedItemID = recommendedItemID; } @Override public double estimate(final Long itemID) { final Float pref = getDataModel() .getPreferenceValue(userID, itemID); if (pref == null) { return Float.NaN; } final double similarityValue = similarity.itemSimilarity( recommendedItemID, itemID); return (1.0 + similarityValue) * pref; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy