Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
ciir.umass.edu.eval.Evaluator Maven / Gradle / Ivy
/*===============================================================================
* Copyright (c) 2010-2016 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.eval;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import ciir.umass.edu.features.FeatureManager;
import ciir.umass.edu.features.LinearNormalizer;
import ciir.umass.edu.features.Normalizer;
import ciir.umass.edu.features.SumNormalizor;
import ciir.umass.edu.features.ZScoreNormalizor;
import ciir.umass.edu.learning.CoorAscent;
import ciir.umass.edu.learning.DataPoint;
import ciir.umass.edu.learning.LinearRegRank;
import ciir.umass.edu.learning.RankList;
import ciir.umass.edu.learning.Ranker;
import ciir.umass.edu.learning.RankerFactory;
import ciir.umass.edu.learning.RankerTrainer;
import ciir.umass.edu.learning.RankerType;
import ciir.umass.edu.learning.boosting.AdaRank;
import ciir.umass.edu.learning.boosting.RankBoost;
import ciir.umass.edu.learning.neuralnet.ListNet;
import ciir.umass.edu.learning.neuralnet.Neuron;
import ciir.umass.edu.learning.neuralnet.RankNet;
import ciir.umass.edu.learning.tree.LambdaMART;
import ciir.umass.edu.learning.tree.RFRanker;
import ciir.umass.edu.metric.ERRScorer;
import ciir.umass.edu.metric.METRIC;
import ciir.umass.edu.metric.MetricScorer;
import ciir.umass.edu.metric.MetricScorerFactory;
import ciir.umass.edu.utilities.FileUtils;
import ciir.umass.edu.utilities.MergeSorter;
import ciir.umass.edu.utilities.MyThreadPool;
import ciir.umass.edu.utilities.RankLibError;
import ciir.umass.edu.utilities.SimpleMath;
/**
* @author vdang
*
* This class is meant to provide the interface to run and compare different ranking algorithms.
* It lets users specify general parameters (e.g. what algorithm to run, training/testing/validating
* data, etc.) as well as algorithm-specific parameters. Type "java -jar bin/RankLib.jar" at the
* command-line to see all the options.
*/
public class Evaluator {
private static final Logger logger = Logger.getLogger(Evaluator.class.getName());
/**
* @param args
*/
public static void main(final String[] args) {
final String[] rType = new String[] { "MART", "RankNet", "RankBoost", "AdaRank", "Coordinate Ascent", "LambdaRank", "LambdaMART",
"ListNet", "Random Forests", "Linear Regression" };
final RankerType[] rType2 = new RankerType[] { RankerType.MART, RankerType.RANKNET, RankerType.RANKBOOST, RankerType.ADARANK,
RankerType.COOR_ASCENT, RankerType.LAMBDARANK, RankerType.LAMBDAMART, RankerType.LISTNET, RankerType.RANDOM_FOREST,
RankerType.LINEAR_REGRESSION };
String trainFile = "";
String featureDescriptionFile = "";
float ttSplit = 0;//train-test split
float tvSplit = 0;//train-validation split
int foldCV = -1;
String validationFile = "";
String testFile = "";
final List testFiles = new ArrayList<>();
int rankerType = 4;
String trainMetric = "ERR@10";
String testMetric = "";
Evaluator.normalize = false;
String savedModelFile = "";
final List savedModelFiles = new ArrayList<>();
String kcvModelDir = "";
String kcvModelFile = "";
String rankFile = "";
String prpFile = "";
int nThread = -1; // nThread = #cpu-cores
//for my personal use
String indriRankingFile = "";
String scoreFile = "";
if (args.length < 2) {
logger.info(() -> "Usage: java -jar RankLib.jar ");
logger.info(() -> "Params:");
logger.info(() -> " [+] Training (+ tuning and evaluation)");
logger.info(() -> "\t-train \t\tTraining data");
logger.info(() -> "\t-ranker \t\tSpecify which ranking algorithm to use");
logger.info(() -> "\t\t\t\t0: MART (gradient boosted regression tree)");
logger.info(() -> "\t\t\t\t1: RankNet");
logger.info(() -> "\t\t\t\t2: RankBoost");
logger.info(() -> "\t\t\t\t3: AdaRank");
logger.info(() -> "\t\t\t\t4: Coordinate Ascent");
logger.info(() -> "\t\t\t\t6: LambdaMART");
logger.info(() -> "\t\t\t\t7: ListNet");
logger.info(() -> "\t\t\t\t8: Random Forests");
logger.info(() -> "\t\t\t\t9: Linear regression (L2 regularization)");
logger.info(
() -> "\t[ -feature ]\tFeature description file: list features to be considered by the learner, each on a separate line");
logger.info(() -> "\t\t\t\tIf not specified, all features will be used.");
logger.info(() -> "\t[ -metric2t ]\tMetric to optimize on the training data. "
+ "Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)");
logger.info(() -> "\t[ -gmax ]\tHighest judged relevance label. It affects the calculation of ERR " + "(default="
+ (int) SimpleMath.logBase2(ERRScorer.MAX) + ", i.e. 5-point scale {0,1,2,3,4})");
logger.info(() -> "\t[ -qrel ]\tTREC-style relevance judgment file. It only affects MAP and NDCG (default=unspecified)");
logger.info(() -> "\t[ -silent ]\t\tDo not print progress messages (which are printed by default)");
logger.info(() -> "\t[ -missingZero ]\tSubstitute zero for missing feature values rather than throwing an exception.");
logger.info(
() -> "\t[ -validate ]\tSpecify if you want to tune your system on the validation data (default=unspecified)");
logger.info(() -> "\t\t\t\tIf specified, the final model will be the one that performs best on the validation data");
logger.info(
() -> "\t[ -tvs ]\tIf you don't have separate validation data, use this to set train-validation split to be (x)(1.0-x)");
logger.info(() -> "\t[ -save ]\tSave the model learned (default=not-save)");
logger.info(() -> "\t[ -test ]\tSpecify if you want to evaluate the trained model on this data (default=unspecified)");
logger.info(() -> "\t[ -tts ]\tSet train-test split to be (x)(1.0-x). -tts will override -tvs");
logger.info(
() -> "\t[ -metric2T ]\tMetric to evaluate on the test data (default to the same as specified for -metric2t)");
logger.info(() -> "\t[ -norm ]\tNormalize all feature vectors (default=no-normalization). Method can be:");
logger.info(() -> "\t\t\t\tsum: normalize each feature by the sum of all its values");
logger.info(() -> "\t\t\t\tzscore: normalize each feature by its mean/standard deviation");
logger.info(() -> "\t\t\t\tlinear: normalize each feature by its min/max values");
logger.info(
() -> "\t[ -kcv ]\t\tSpecify if you want to perform k-fold cross validation using the specified training data (default=NoCV)");
logger.info(() -> "\t\t\t\t-tvs can be used to further reserve a portion of the training data in each fold for validation");
logger.info(() -> "\t[ -kcvmd ]\tDirectory for models trained via cross-validation (default=not-save)");
logger.info(
() -> "\t[ -kcvmn ]\tName for model learned in each fold. It will be prefix-ed with the fold-number (default=empty)");
logger.info(() -> " [-] RankNet-specific parameters");
logger.info(() -> "\t[ -epoch ]\t\tThe number of epochs to train (default=" + RankNet.nIteration + ")");
logger.info(() -> "\t[ -layer ]\tThe number of hidden layers (default=" + RankNet.nHiddenLayer + ")");
logger.info(() -> "\t[ -node ]\tThe number of hidden nodes per layer (default=" + RankNet.nHiddenNodePerLayer + ")");
logger.info(() -> "\t[ -lr ]\t\tLearning rate (default="
+ (new DecimalFormat("###.########")).format(RankNet.learningRate) + ")");
logger.info(() -> " [-] RankBoost-specific parameters");
logger.info(() -> "\t[ -round ]\t\tThe number of rounds to train (default=" + RankBoost.nIteration + ")");
logger.info(() -> "\t[ -tc ]\t\tNumber of threshold candidates to search. -1 to use all feature values (default="
+ RankBoost.nThreshold + ")");
logger.info(() -> " [-] AdaRank-specific parameters");
logger.info(() -> "\t[ -round ]\t\tThe number of rounds to train (default=" + AdaRank.nIteration + ")");
logger.info(() -> "\t[ -noeq ]\t\tTrain without enqueuing too-strong features (default=unspecified)");
logger.info(
() -> "\t[ -tolerance ]\tTolerance between two consecutive rounds of learning (default=" + AdaRank.tolerance + ")");
logger.info(() -> "\t[ -max ]\tThe maximum number of times a feature can be consecutively selected "
+ "without changing performance (default=" + AdaRank.maxSelCount + ")");
logger.info(() -> " [-] Coordinate Ascent-specific parameters");
logger.info(() -> "\t[ -r ]\t\tThe number of random restarts (default=" + CoorAscent.nRestart + ")");
logger.info(() -> "\t[ -i ]\tThe number of iterations to search in each dimension (default="
+ CoorAscent.nMaxIteration + ")");
logger.info(() -> "\t[ -tolerance ]\tPerformance tolerance between two solutions (default=" + CoorAscent.tolerance + ")");
logger.info(() -> "\t[ -reg ]\tRegularization parameter (default=no-regularization)");
logger.info(() -> " [-] {MART, LambdaMART}-specific parameters");
logger.info(() -> "\t[ -tree ]\t\tNumber of trees (default=" + LambdaMART.nTrees + ")");
logger.info(() -> "\t[ -leaf ]\t\tNumber of leaves for each tree (default=" + LambdaMART.nTreeLeaves + ")");
logger.info(() -> "\t[ -shrinkage ]\tShrinkage, or learning rate (default=" + LambdaMART.learningRate + ")");
logger.info(() -> "\t[ -tc ]\t\tNumber of threshold candidates for tree spliting. -1 to use all feature values (default="
+ LambdaMART.nThreshold + ")");
logger.info(() -> "\t[ -mls ]\t\tMin leaf support -- minimum % of docs each leaf has to contain (default="
+ LambdaMART.minLeafSupport + ")");
logger.info(
() -> "\t[ -estop ]\t\tStop early when no improvement is observed on validaton data in e consecutive rounds (default="
+ LambdaMART.nRoundToStopEarly + ")");
logger.info(() -> " [-] ListNet-specific parameters");
logger.info(() -> "\t[ -epoch ]\t\tThe number of epochs to train (default=" + ListNet.nIteration + ")");
logger.info(() -> "\t[ -lr ]\t\tLearning rate (default="
+ (new DecimalFormat("###.########")).format(ListNet.learningRate) + ")");
logger.info(() -> " [-] Random Forests-specific parameters");
logger.info(() -> "\t[ -bag ]\t\tNumber of bags (default=" + RFRanker.nBag + ")");
logger.info(() -> "\t[ -srate ]\t\tSub-sampling rate (default=" + RFRanker.subSamplingRate + ")");
logger.info(() -> "\t[ -frate ]\t\tFeature sampling rate (default=" + RFRanker.featureSamplingRate + ")");
final int type = (RFRanker.rType.ordinal() - RankerType.MART.ordinal());
logger.info(() -> "\t[ -rtype ]\tRanker to bag (default=" + type + ", i.e. " + rType[type] + ")");
logger.info(() -> "\t[ -tree ]\t\tNumber of trees in each bag (default=" + RFRanker.nTrees + ")");
logger.info(() -> "\t[ -leaf ]\t\tNumber of leaves for each tree (default=" + RFRanker.nTreeLeaves + ")");
logger.info(() -> "\t[ -shrinkage ]\tShrinkage, or learning rate (default=" + RFRanker.learningRate + ")");
logger.info(() -> "\t[ -tc ]\t\tNumber of threshold candidates for tree spliting. -1 to use all feature values (default="
+ RFRanker.nThreshold + ")");
logger.info(() -> "\t[ -mls ]\t\tMin leaf support -- minimum % of docs each leaf has to contain (default="
+ RFRanker.minLeafSupport + ")");
logger.info(() -> " [-] Linear Regression-specific parameters");
logger.info(() -> "\t[ -L2 ]\t\tL2 regularization parameter (default=" + LinearRegRank.lambda + ")");
logger.info(() -> " [+] Testing previously saved models");
logger.info(() -> "\t-load \t\tThe model to load");
logger.info(() -> "\t\t\t\tMultiple -load can be used to specify models from multiple folds (in increasing order),");
logger.info(() -> "\t\t\t\t in which case the test/rank data will be partitioned accordingly.");
logger.info(() -> "\t-test \t\tTest data to evaluate the model(s) (specify either this or -rank but not both)");
logger.info(() -> "\t-rank \t\tRank the samples in the specified file (specify either this or -test but not both)");
logger.info(() -> "\t[ -metric2T ]\tMetric to evaluate on the test data (default=ERR@10)");
logger.info(() -> "\t[ -gmax ]\tHighest judged relevance label. It affects the calculation of ERR (default="
+ (int) SimpleMath.logBase2(ERRScorer.MAX) + ", i.e. 5-point scale {0,1,2,3,4})");
logger.info(() -> "\t[ -score ]\tStore ranker's score for each object being ranked (has to be used with -rank)");
logger.info(() -> "\t[ -qrel ]\tTREC-style relevance judgment file. It only affects MAP and NDCG (default=unspecified)");
logger.info(
() -> "\t[ -idv ]\t\tSave model performance (in test metric) on individual ranked lists (has to be used with -test)");
logger.info(() -> "\t[ -norm ]\t\tNormalize feature vectors (similar to -norm for training/tuning)");
return;
}
for (int i = 0; i < args.length; i++) {
if (args[i].equalsIgnoreCase("-train")) {
trainFile = args[++i];
} else if (args[i].equalsIgnoreCase("-ranker")) {
rankerType = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-feature")) {
featureDescriptionFile = args[++i];
} else if (args[i].equalsIgnoreCase("-metric2t")) {
trainMetric = args[++i];
} else if (args[i].equalsIgnoreCase("-metric2T")) {
testMetric = args[++i];
} else if (args[i].equalsIgnoreCase("-gmax")) {
ERRScorer.MAX = Math.pow(2, Double.parseDouble(args[++i]));
} else if (args[i].equalsIgnoreCase("-qrel")) {
qrelFile = args[++i];
} else if (args[i].equalsIgnoreCase("-tts")) {
ttSplit = Float.parseFloat(args[++i]);
} else if (args[i].equalsIgnoreCase("-tvs")) {
tvSplit = Float.parseFloat(args[++i]);
} else if (args[i].equalsIgnoreCase("-kcv")) {
foldCV = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-validate")) {
validationFile = args[++i];
} else if (args[i].equalsIgnoreCase("-test")) {
testFile = args[++i];
testFiles.add(testFile);
} else if (args[i].equalsIgnoreCase("-norm")) {
Evaluator.normalize = true;
final String n = args[++i];
if (n.equalsIgnoreCase("sum")) {
Evaluator.nml = new SumNormalizor();
} else if (n.equalsIgnoreCase("zscore")) {
Evaluator.nml = new ZScoreNormalizor();
} else if (n.equalsIgnoreCase("linear")) {
Evaluator.nml = new LinearNormalizer();
} else {
throw RankLibError.create("Unknown normalizor: " + n);
}
} else if (args[i].equalsIgnoreCase("-sparse")) {
useSparseRepresentation = true;
} else if (args[i].equalsIgnoreCase("-save")) {
Evaluator.modelFile = args[++i];
} else if (args[i].equalsIgnoreCase("-kcvmd")) {
kcvModelDir = args[++i];
} else if (args[i].equalsIgnoreCase("-kcvmn")) {
kcvModelFile = args[++i];
} else if (args[i].equalsIgnoreCase("-missingZero")) {
DataPoint.missingZero = true;
} else if (args[i].equalsIgnoreCase("-load")) {
savedModelFile = args[++i];
savedModelFiles.add(args[i]);
} else if (args[i].equalsIgnoreCase("-idv")) {
prpFile = args[++i];
} else if (args[i].equalsIgnoreCase("-rank")) {
rankFile = args[++i];
} else if (args[i].equalsIgnoreCase("-score")) {
scoreFile = args[++i];
} else if (args[i].equalsIgnoreCase("-epoch")) {
RankNet.nIteration = Integer.parseInt(args[++i]);
ListNet.nIteration = Integer.parseInt(args[i]);
} else if (args[i].equalsIgnoreCase("-layer")) {
RankNet.nHiddenLayer = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-node")) {
RankNet.nHiddenNodePerLayer = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-lr")) {
RankNet.learningRate = Double.parseDouble(args[++i]);
ListNet.learningRate = Neuron.learningRate;
}
//RankBoost
else if (args[i].equalsIgnoreCase("-tc")) {
RankBoost.nThreshold = Integer.parseInt(args[++i]);
LambdaMART.nThreshold = Integer.parseInt(args[i]);
}
//AdaRank
else if (args[i].equalsIgnoreCase("-noeq")) {
AdaRank.trainWithEnqueue = false;
} else if (args[i].equalsIgnoreCase("-max")) {
AdaRank.maxSelCount = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-r")) {
CoorAscent.nRestart = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-i")) {
CoorAscent.nMaxIteration = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-round")) {
RankBoost.nIteration = Integer.parseInt(args[++i]);
AdaRank.nIteration = Integer.parseInt(args[i]);
} else if (args[i].equalsIgnoreCase("-reg")) {
CoorAscent.slack = Double.parseDouble(args[++i]);
CoorAscent.regularized = true;
} else if (args[i].equalsIgnoreCase("-tolerance")) {
AdaRank.tolerance = Double.parseDouble(args[++i]);
CoorAscent.tolerance = Double.parseDouble(args[i]);
}
//MART / LambdaMART / Random forest
else if (args[i].equalsIgnoreCase("-tree")) {
LambdaMART.nTrees = Integer.parseInt(args[++i]);
RFRanker.nTrees = Integer.parseInt(args[i]);
} else if (args[i].equalsIgnoreCase("-leaf")) {
LambdaMART.nTreeLeaves = Integer.parseInt(args[++i]);
RFRanker.nTreeLeaves = Integer.parseInt(args[i]);
} else if (args[i].equalsIgnoreCase("-shrinkage")) {
LambdaMART.learningRate = Float.parseFloat(args[++i]);
RFRanker.learningRate = Float.parseFloat(args[i]);
} else if (args[i].equalsIgnoreCase("-mls")) {
LambdaMART.minLeafSupport = Integer.parseInt(args[++i]);
RFRanker.minLeafSupport = LambdaMART.minLeafSupport;
} else if (args[i].equalsIgnoreCase("-estop")) {
LambdaMART.nRoundToStopEarly = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-bag")) {
RFRanker.nBag = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-srate")) {
RFRanker.subSamplingRate = Float.parseFloat(args[++i]);
} else if (args[i].equalsIgnoreCase("-frate")) {
RFRanker.featureSamplingRate = Float.parseFloat(args[++i]);
} else if (args[i].equalsIgnoreCase("-rtype")) {
final int rt = Integer.parseInt(args[++i]);
if (rt == 0 || rt == 6) {
RFRanker.rType = rType2[rt];
} else {
throw RankLibError.create(rType[rt] + " cannot be bagged. Random Forests only supports MART/LambdaMART.");
}
}
else if (args[i].equalsIgnoreCase("-L2")) {
LinearRegRank.lambda = Double.parseDouble(args[++i]);
} else if (args[i].equalsIgnoreCase("-thread")) {
nThread = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-nf")) {
newFeatureFile = args[++i];
} else if (args[i].equalsIgnoreCase("-keep")) {
keepOrigFeatures = true;
} else if (args[i].equalsIgnoreCase("-t")) {
topNew = Integer.parseInt(args[++i]);
} else if (args[i].equalsIgnoreCase("-indri")) {
indriRankingFile = args[++i];
} else if (args[i].equalsIgnoreCase("-hr")) {
mustHaveRelDoc = true;
} else {
throw RankLibError.create("Unknown command-line parameter: " + args[i]);
}
}
if (nThread == -1) {
nThread = Runtime.getRuntime().availableProcessors();
}
MyThreadPool.init(nThread);
if (testMetric.isEmpty()) {
testMetric = trainMetric;
}
logger.info(() -> (keepOrigFeatures) ? "Keep orig. features" : "Discard orig. features");
final Evaluator e = new Evaluator(rType2[rankerType], trainMetric, testMetric);
if (!trainFile.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Training data: " + trainFile);
}
//print out parameter settings
if (foldCV != -1) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Cross validation: " + foldCV + " folds.");
}
if (tvSplit > 0) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Train-Validation split: " + tvSplit);
}
}
} else {
if (!testFile.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Test data: " + testFile);
}
} else if (ttSplit > 0) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Train-Test split: " + ttSplit);
}
}
if (!validationFile.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Validation data: " + validationFile);
}
} else if (ttSplit <= 0 && tvSplit > 0) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Train-Validation split: " + tvSplit);
}
}
}
logger.info(() -> "Feature vector representation: " + ((useSparseRepresentation) ? "Sparse" : "Dense") + ".");
if (logger.isLoggable(Level.INFO)) {
logger.info("Ranking method: " + rType[rankerType]);
}
if (!featureDescriptionFile.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Feature description file: " + featureDescriptionFile);
}
} else {
logger.info(() -> "Feature description file: Unspecified. All features will be used.");
}
if (logger.isLoggable(Level.INFO)) {
logger.info("Train metric: " + trainMetric);
logger.info("Test metric: " + testMetric);
}
if (trainMetric.toUpperCase().startsWith("ERR") || testMetric.toUpperCase().startsWith("ERR")) {
logger.info(() -> "Highest relevance label (to compute ERR): " + (int) SimpleMath.logBase2(ERRScorer.MAX));
}
if (!qrelFile.isEmpty()) {
logger.info(() -> "TREC-format relevance judgment (only affects MAP and NDCG scores): " + qrelFile);
}
logger.info(() -> "Feature normalization: " + ((Evaluator.normalize) ? Evaluator.nml.name() : "No"));
if (!kcvModelDir.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Models directory: " + kcvModelDir);
}
}
if (!kcvModelFile.isEmpty()) {
if (logger.isLoggable(Level.INFO)) {
logger.info("Models' name: " + kcvModelFile);
}
}
if (!modelFile.isEmpty()) {
logger.info(() -> "Model file: " + modelFile);
}
if (logger.isLoggable(Level.INFO)) {
logger.info("[+] " + rType[rankerType] + "'s Parameters:");
}
final RankerFactory rf = new RankerFactory();
rf.createRanker(rType2[rankerType]).printParameters();
//starting to do some work
if (foldCV != -1) {
//- Behavioral changes: Write kcv models if kcvmd OR kcvmn defined. Use
// default names for missing arguments: "kcvmodels" default directory
// and "kcv" default model name.
if (!kcvModelDir.isEmpty() && kcvModelFile.isEmpty()) {
kcvModelFile = "kcv";
} else if (kcvModelDir.isEmpty() && !kcvModelFile.isEmpty()) {
kcvModelDir = "kcvmodels";
}
//- models won't be saved if kcvModelDir="" [OBSOLETE]
//- Models saved if EITHER kcvmd OR kcvmn defined. Use default names for missing values.
e.evaluate(trainFile, featureDescriptionFile, foldCV, tvSplit, kcvModelDir, kcvModelFile);
} else {
if (ttSplit > 0.0) {
e.evaluate(trainFile, validationFile, featureDescriptionFile, ttSplit);//no validation will be done if validationFile=""
} else if (tvSplit > 0.0) {
e.evaluate(trainFile, tvSplit, testFile, featureDescriptionFile);
} else {
e.evaluate(trainFile, validationFile, testFile, featureDescriptionFile);//All files except for trainFile can be empty. This will be handled appropriately
}
}
} else //scenario: test a saved model
{
if (logger.isLoggable(Level.INFO)) {
logger.info("Model file: " + savedModelFile);
}
logger.info(() -> "Feature normalization: " + ((Evaluator.normalize) ? Evaluator.nml.name() : "No"));
if (!rankFile.isEmpty()) {
if (!scoreFile.isEmpty()) {
if (savedModelFiles.size() > 1) {
e.score(savedModelFiles, rankFile, scoreFile);
} else {
e.score(savedModelFile, rankFile, scoreFile);
}
} else if (!indriRankingFile.isEmpty()) {
if (savedModelFiles.size() > 1) {
e.rank(savedModelFiles, rankFile, indriRankingFile);
} else if (savedModelFiles.size() == 1) {
e.rank(savedModelFile, rankFile, indriRankingFile);
} else {
//This is *ONLY* for debugging purposes. It is *NOT* exposed via cmd-line
//It will evaluate the input ranking (without being re-ranked by any model) using any measure specified via metric2T
e.rank(rankFile, indriRankingFile);
}
} else {
throw RankLibError
.create("This function has been removed.\n" + "Consider using -score in addition to your current parameters, "
+ "and do the ranking yourself based on these scores.");
}
} else {
if (logger.isLoggable(Level.INFO)) {
logger.info("Test metric: " + testMetric);
}
if (testMetric.startsWith("ERR")) {
logger.info(() -> "Highest relevance label (to compute ERR): " + (int) SimpleMath.logBase2(ERRScorer.MAX));
}
if (!savedModelFile.isEmpty()) {
if (savedModelFiles.size() > 1)//models trained via cross-validation
{
if (testFiles.size() > 1) {
e.test(savedModelFiles, testFiles, prpFile);
} else {
e.test(savedModelFiles, testFile, prpFile);
}
} else if (savedModelFiles.size() == 1) {
e.test(savedModelFile, testFile, prpFile);
}
} else if (!scoreFile.isEmpty()) {
e.testWithScoreFile(testFile, scoreFile);
//It will evaluate the input ranking (without being re-ranked by any model) using any measure specified via metric2T
} else {
e.test(testFile, prpFile);
}
}
}
MyThreadPool.getInstance().shutdown();
}
//main settings
public static boolean mustHaveRelDoc = false;
public static boolean useSparseRepresentation = false;
public static boolean normalize = false;
public static Normalizer nml = new SumNormalizor();
public static String modelFile = "";
public static String qrelFile = "";//measure such as NDCG and MAP requires "complete" judgment.
//The relevance labels attached to our samples might be only a subset of the entire relevance judgment set.
//If we're working on datasets like Letor/Web10K or Yahoo! LTR, we can totally ignore this parameter.
//However, if we sample top-K documents from baseline run (e.g. query-likelihood) to create training data for TREC collections,
//there's a high chance some relevant document (the in qrel file TREC provides) does not appear in our top-K list -- thus the calculation of
//MAP and NDCG is no longer precise. If so, specify that "external" relevance judgment here (via the -qrel cmd parameter)
//tmp settings, for personal use
public static String newFeatureFile = "";
public static boolean keepOrigFeatures = false;
public static int topNew = 2000;
protected RankerFactory rFact = new RankerFactory();
protected MetricScorerFactory mFact = new MetricScorerFactory();
protected MetricScorer trainScorer = null;
protected MetricScorer testScorer = null;
protected RankerType type = RankerType.MART;
public Evaluator(final RankerType rType, final METRIC trainMetric, final METRIC testMetric) {
this.type = rType;
trainScorer = mFact.createScorer(trainMetric);
testScorer = mFact.createScorer(testMetric);
if (!qrelFile.isEmpty()) {
trainScorer.loadExternalRelevanceJudgment(qrelFile);
testScorer.loadExternalRelevanceJudgment(qrelFile);
}
}
public Evaluator(final RankerType rType, final METRIC trainMetric, final int trainK, final METRIC testMetric, final int testK) {
this.type = rType;
trainScorer = mFact.createScorer(trainMetric, trainK);
testScorer = mFact.createScorer(testMetric, testK);
if (!qrelFile.isEmpty()) {
trainScorer.loadExternalRelevanceJudgment(qrelFile);
testScorer.loadExternalRelevanceJudgment(qrelFile);
}
}
public Evaluator(final RankerType rType, final METRIC trainMetric, final METRIC testMetric, final int k) {
this.type = rType;
trainScorer = mFact.createScorer(trainMetric, k);
testScorer = mFact.createScorer(testMetric, k);
if (!qrelFile.isEmpty()) {
trainScorer.loadExternalRelevanceJudgment(qrelFile);
testScorer.loadExternalRelevanceJudgment(qrelFile);
}
}
public Evaluator(final RankerType rType, final METRIC metric, final int k) {
this.type = rType;
trainScorer = mFact.createScorer(metric, k);
if (!qrelFile.isEmpty()) {
trainScorer.loadExternalRelevanceJudgment(qrelFile);
}
testScorer = trainScorer;
}
public Evaluator(final RankerType rType, final String trainMetric, final String testMetric) {
this.type = rType;
trainScorer = mFact.createScorer(trainMetric);
testScorer = mFact.createScorer(testMetric);
if (!qrelFile.isEmpty()) {
trainScorer.loadExternalRelevanceJudgment(qrelFile);
testScorer.loadExternalRelevanceJudgment(qrelFile);
}
}
public List readInput(final String inputFile) {
return FeatureManager.readInput(inputFile, mustHaveRelDoc, useSparseRepresentation);
}
public void normalize(final List samples) {
for (final RankList sample : samples) {
nml.normalize(sample);
}
}
public void normalize(final List samples, final int[] fids) {
for (final RankList sample : samples) {
nml.normalize(sample, fids);
}
}
public void normalizeAll(final List> samples, final int[] fids) {
for (final List sample : samples) {
normalize(sample, fids);
}
}
public int[] readFeature(final String featureDefFile) {
if (featureDefFile.isEmpty()) {
return null;
}
return FeatureManager.readFeature(featureDefFile);
}
public double evaluate(final Ranker ranker, final List rl) {
List l = rl;
if (ranker != null) {
l = ranker.rank(rl);
}
return testScorer.score(l);
}
/**
* Evaluate the currently selected ranking algorithm using <training data, validation data, testing data and the defined features>.
* @param trainFile
* @param validationFile
* @param testFile
* @param featureDefFile
*/
public void evaluate(final String trainFile, final String validationFile, final String testFile, final String featureDefFile) {
final List train = readInput(trainFile);//read input
List validation = null;
if (!validationFile.isEmpty()) {
validation = readInput(validationFile);
}
List test = null;
if (!testFile.isEmpty()) {
test = readInput(testFile);
}
int[] features = readFeature(featureDefFile);//read features
if (features == null) {
features = FeatureManager.getFeatureFromSampleVector(train);
}
if (normalize) {
normalize(train, features);
if (validation != null) {
normalize(validation, features);
}
if (test != null) {
normalize(test, features);
}
}
final RankerTrainer trainer = new RankerTrainer();
final Ranker ranker = trainer.train(type, train, validation, features, trainScorer);
if (test != null) {
final double rankScore = evaluate(ranker, test);
logger.info(() -> testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!modelFile.isEmpty()) {
ranker.save(modelFile);
logger.info(() -> "Model saved to: " + modelFile);
}
}
/**
* Evaluate the currently selected ranking algorithm using percenTrain% of the samples for training the rest for testing.
* @param sampleFile
* @param validationFile Empty string for "no validation data"
* @param featureDefFile
* @param percentTrain
*/
public void evaluate(final String sampleFile, final String validationFile, final String featureDefFile, final double percentTrain) {
final List trainingData = new ArrayList<>();
final List testData = new ArrayList<>();
final int[] features = prepareSplit(sampleFile, featureDefFile, percentTrain, normalize, trainingData, testData);
List validation = null;
if (!validationFile.isEmpty()) {
validation = readInput(validationFile);
if (normalize) {
normalize(validation, features);
}
}
final RankerTrainer trainer = new RankerTrainer();
final Ranker ranker = trainer.train(type, trainingData, validation, features, trainScorer);
final double rankScore = evaluate(ranker, testData);
logger.info(() -> testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
if (!modelFile.isEmpty()) {
ranker.save(modelFile);
logger.info(() -> "Model saved to: " + modelFile);
}
}
/**
* Evaluate the currently selected ranking algorithm using percenTrain% of the training samples for training the rest as validation data.
* Test data is specified separately.
* @param trainFile
* @param percentTrain
* @param testFile Empty string for "no test data"
* @param featureDefFile
*/
public void evaluate(final String trainFile, final double percentTrain, final String testFile, final String featureDefFile) {
final List train = new ArrayList<>();
final List validation = new ArrayList<>();
final int[] features = prepareSplit(trainFile, featureDefFile, percentTrain, normalize, train, validation);
List test = null;
if (!testFile.isEmpty()) {
test = readInput(testFile);
if (normalize) {
normalize(test, features);
}
}
final RankerTrainer trainer = new RankerTrainer();
final Ranker ranker = trainer.train(type, train, validation, features, trainScorer);
if (test != null) {
final double rankScore = evaluate(ranker, test);
logger.info(() -> testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!modelFile.isEmpty()) {
ranker.save(modelFile);
logger.info(() -> "Model saved to: " + modelFile);
}
}
/**
* Evaluate the currently selected ranking algorithm using <data, defined features> with k-fold cross validation.
* @param sampleFile
* @param featureDefFile
* @param nFold
* @param modelDir
* @param modelFile
*/
public void evaluate(final String sampleFile, final String featureDefFile, final int nFold, final String modelDir,
final String modelFile) {
evaluate(sampleFile, featureDefFile, nFold, -1, modelDir, modelFile);
}
/**
* Evaluate the currently selected ranking algorithm using <data, defined features> with k-fold cross validation.
* @param sampleFile
* @param featureDefFile
* @param nFold
* @param tvs Train-validation split ratio.
* @param modelDir
* @param modelFile
*/
public void evaluate(final String sampleFile, final String featureDefFile, final int nFold, final float tvs, final String modelDir,
final String modelFile) {
final List> trainingData = new ArrayList<>();
final List> validationData = new ArrayList<>();
final List> testData = new ArrayList<>();
//read all samples
final List samples = readInput(sampleFile);
//get features
int[] features = readFeature(featureDefFile);//read features
if (features == null) {
features = FeatureManager.getFeatureFromSampleVector(samples);
}
FeatureManager.prepareCV(samples, nFold, tvs, trainingData, validationData, testData);
//normalization
if (normalize) {
for (int i = 0; i < nFold; i++) {
normalizeAll(trainingData, features);
normalizeAll(validationData, features);
normalizeAll(testData, features);
}
}
Ranker ranker = null;
double scoreOnTrain = 0.0;
double scoreOnTest = 0.0;
double totalScoreOnTest = 0.0;
int totalTestSampleSize = 0;
final double[][] scores = new double[nFold][];
for (int i = 0; i < nFold; i++) {
scores[i] = new double[] { 0.0, 0.0 };
}
for (int i = 0; i < nFold; i++) {
final List train = trainingData.get(i);
List vali = null;
if (tvs > 0) {
vali = validationData.get(i);
}
final List test = testData.get(i);
final RankerTrainer trainer = new RankerTrainer();
ranker = trainer.train(type, train, vali, features, trainScorer);
final double s2 = evaluate(ranker, test);
scoreOnTrain += ranker.getScoreOnTrainingData();
scoreOnTest += s2;
totalScoreOnTest += s2 * test.size();
totalTestSampleSize += test.size();
//save performance in each fold
scores[i][0] = ranker.getScoreOnTrainingData();
scores[i][1] = s2;
if (!modelDir.isEmpty()) {
ranker.save(FileUtils.makePathStandard(modelDir) + "f" + (i + 1) + "." + modelFile);
if (logger.isLoggable(Level.INFO)) {
logger.info("Fold-" + (i + 1) + " model saved to: " + modelFile);
}
}
}
if (logger.isLoggable(Level.INFO)) {
logger.info(() -> "Summary:");
logger.info(() -> testScorer.name() + "\t| Train\t| Test");
for (int i = 0; i < nFold; i++) {
logger.info("Fold " + (i + 1) + "\t| " + SimpleMath.round(scores[i][0], 4) + "\t| " + SimpleMath.round(scores[i][1], 4)
+ "\t");
}
logger.info(
"Avg.\t| " + SimpleMath.round(scoreOnTrain / nFold, 4) + "\t| " + SimpleMath.round(scoreOnTest / nFold, 4) + "\t");
logger.info("Total\t| " + "\t" + "\t| " + SimpleMath.round(totalScoreOnTest / totalTestSampleSize, 4) + "\t");
}
}
/**
* Evaluate the performance (in -metric2T) of the input rankings
* @param testFile Input rankings
*/
public void test(final String testFile) {
final List test = readInput(testFile);
final double rankScore = evaluate(null, test);
logger.info(() -> testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
public void test(final String testFile, final String prpFile) {
final List test = readInput(testFile);
double rankScore = 0.0;
final List ids = new ArrayList<>();
final List scores = new ArrayList<>();
for (final RankList l : test) {
final double score = testScorer.score(l);
ids.add(l.getID());
scores.add(score);
rankScore += score;
}
rankScore /= test.size();
ids.add("all");
scores.add(rankScore);
if (logger.isLoggable(Level.INFO)) {
logger.info(testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!prpFile.isEmpty()) {
savePerRankListPerformanceFile(ids, scores, prpFile);
logger.info(() -> "Per-ranked list performance saved to: " + prpFile);
}
}
/**
* Evaluate the performance (in -metric2T) of a pre-trained model. Save its performance on each of the ranked list if this is specified.
* @param modelFile Pre-trained model
* @param testFile Test data
* @param prpFile Per-ranked list performance file: Model's performance on each of the ranked list. These won't be saved if prpFile="".
*/
public void test(final String modelFile, final String testFile, final String prpFile) {
final Ranker ranker = rFact.loadRankerFromFile(modelFile);
final int[] features = ranker.getFeatures();
final List test = readInput(testFile);
if (normalize) {
normalize(test, features);
}
double rankScore = 0.0;
final List ids = new ArrayList<>();
final List scores = new ArrayList<>();
for (final RankList aTest : test) {
final RankList l = ranker.rank(aTest);
final double score = testScorer.score(l);
ids.add(l.getID());
scores.add(score);
rankScore += score;
}
rankScore /= test.size();
ids.add("all");
scores.add(rankScore);
if (logger.isLoggable(Level.INFO)) {
logger.info(testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!prpFile.isEmpty()) {
savePerRankListPerformanceFile(ids, scores, prpFile);
logger.info(() -> "Per-ranked list performance saved to: " + prpFile);
}
}
/**
* Evaluate the performance (in -metric2T) of k pre-trained models. Data in the test file will be splitted into k fold, where k=|models|.
* Each model will be evaluated on the data from the corresponding fold.
* @param modelFiles Pre-trained models
* @param testFile Test data
* @param prpFile Per-ranked list performance file: Model's performance on each of the ranked list. These won't be saved if prpFile="".
*/
public void test(final List modelFiles, final String testFile, final String prpFile) {
final List> trainingData = new ArrayList<>();
final List> testData = new ArrayList<>();
//read all samples
final int nFold = modelFiles.size();
final List samples = readInput(testFile);
logger.info(() -> "Preparing " + nFold + "-fold test data... ");
FeatureManager.prepareCV(samples, nFold, trainingData, testData);
double rankScore = 0.0;
final List ids = new ArrayList<>();
final List scores = new ArrayList<>();
for (int f = 0; f < nFold; f++) {
final List test = testData.get(f);
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList aTest : test) {
final RankList l = ranker.rank(aTest);
final double score = testScorer.score(l);
ids.add(l.getID());
scores.add(score);
rankScore += score;
}
}
rankScore = rankScore / ids.size();
ids.add("all");
scores.add(rankScore);
if (logger.isLoggable(Level.INFO)) {
logger.info(testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!prpFile.isEmpty()) {
savePerRankListPerformanceFile(ids, scores, prpFile);
logger.info(() -> "Per-ranked list performance saved to: " + prpFile);
}
}
/**
* Similar to the above, except data has already been splitted. The k-th model will be applied on the k-th test file.
* @param modelFiles
* @param testFiles
* @param prpFile
*/
public void test(final List modelFiles, final List testFiles, final String prpFile) {
final int nFold = modelFiles.size();
double rankScore = 0.0;
final List ids = new ArrayList<>();
final List scores = new ArrayList<>();
for (int f = 0; f < nFold; f++) {
final List test = readInput(testFiles.get(f));
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList aTest : test) {
final RankList l = ranker.rank(aTest);
final double score = testScorer.score(l);
ids.add(l.getID());
scores.add(score);
rankScore += score;
}
}
rankScore = rankScore / ids.size();
ids.add("all");
scores.add(rankScore);
if (logger.isLoggable(Level.INFO)) {
logger.info(testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
}
if (!prpFile.isEmpty()) {
savePerRankListPerformanceFile(ids, scores, prpFile);
logger.info(() -> "Per-ranked list performance saved to: " + prpFile);
}
}
/**
* Re-order the input rankings and measure their effectiveness (in -metric2T)
* @param testFile Input rankings
* @param scoreFile The model score file on each of the documents
*/
public void testWithScoreFile(final String testFile, final String scoreFile) {
try (BufferedReader in = FileUtils.smartReader(scoreFile)) {
final List test = readInput(testFile);
String content = "";
final List scores = new ArrayList<>();
while ((content = in.readLine()) != null) {
content = content.trim();
if (content.isEmpty()) {
continue;
}
scores.add(Double.parseDouble(content));
}
int k = 0;
for (int i = 0; i < test.size(); i++) {
RankList rl = test.get(i);
final double[] s = new double[rl.size()];
for (int j = 0; j < rl.size(); j++) {
s[j] = scores.get(k++);
}
rl = new RankList(rl, MergeSorter.sort(s, false));
test.set(i, rl);
}
final double rankScore = evaluate(null, test);
logger.info(() -> testScorer.name() + " on test data: " + SimpleMath.round(rankScore, 4));
} catch (final IOException e) {
throw RankLibError.create(e);
}
}
/**
* Write the model's score for each of the documents in a test rankings.
* @param modelFile Pre-trained model
* @param testFile Test data
* @param outputFile Output file
*/
public void score(final String modelFile, final String testFile, final String outputFile) {
final Ranker ranker = rFact.loadRankerFromFile(modelFile);
final int[] features = ranker.getFeatures();
final List test = readInput(testFile);
if (normalize) {
normalize(test, features);
}
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFile), "UTF-8"))) {
for (final RankList l : test) {
for (int j = 0; j < l.size(); j++) {
out.write(l.getID() + "\t" + j + "\t" + ranker.eval(l.get(j)) + "");
out.newLine();
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::rank(): ", ex);
}
}
/**
* Write the models' score for each of the documents in a test rankings. These test rankings are splitted into k chunks where k=|models|.
* Each model is applied on the data from the corresponding fold.
* @param modelFiles
* @param testFile
* @param outputFile
*/
public void score(final List modelFiles, final String testFile, final String outputFile) {
final List> trainingData = new ArrayList<>();
final List> testData = new ArrayList<>();
//read all samples
final int nFold = modelFiles.size();
final List samples = readInput(testFile);
logger.info(() -> "Preparing " + nFold + "-fold test data... ");
FeatureManager.prepareCV(samples, nFold, trainingData, testData);
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFile), "UTF-8"))) {
for (int f = 0; f < nFold; f++) {
final List test = testData.get(f);
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList l : test) {
for (int j = 0; j < l.size(); j++) {
out.write(l.getID() + "\t" + j + "\t" + ranker.eval(l.get(j)) + "");
out.newLine();
}
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::score(): ", ex);
}
}
/**
* Similar to the above, except data has already been split. The k-th model will be applied on the k-th test file.
* @param modelFiles
* @param testFiles
* @param outputFile
*/
public void score(final List modelFiles, final List testFiles, final String outputFile) {
final int nFold = modelFiles.size();
try (BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFile), "UTF-8"))) {
for (int f = 0; f < nFold; f++) {
final List test = readInput(testFiles.get(f));
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList l : test) {
for (int j = 0; j < l.size(); j++) {
out.write(l.getID() + "\t" + j + "\t" + ranker.eval(l.get(j)));
out.newLine();
}
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::score(): ", ex);
}
}
/**
* Use a pre-trained model to re-rank the test rankings. Save the output ranking in indri's run format
* @param modelFile
* @param testFile
* @param indriRanking
*/
public void rank(final String modelFile, final String testFile, final String indriRanking) {
final Ranker ranker = rFact.loadRankerFromFile(modelFile);
final int[] features = ranker.getFeatures();
final List test = readInput(testFile);
if (normalize) {
normalize(test, features);
}
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(indriRanking), "UTF-8"))) {
for (final RankList l : test) {
final double[] scores = new double[l.size()];
for (int j = 0; j < l.size(); j++) {
scores[j] = ranker.eval(l.get(j));
}
final int[] idx = MergeSorter.sort(scores, false);
for (int j = 0; j < idx.length; j++) {
final int k = idx[j];
final String str = l.getID() + " Q0 " + l.get(k).getDescription().replace("#", "").trim() + " " + (j + 1) + " "
+ SimpleMath.round(scores[k], 5) + " indri";
out.write(str);
out.newLine();
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::rank(): ", ex);
}
}
/**
* Generate a ranking in Indri's format from the input ranking
* @param testFile
* @param indriRanking
*/
public void rank(final String testFile, final String indriRanking) {
final List test = readInput(testFile);
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(indriRanking), "UTF-8"))) {
for (final RankList l : test) {
for (int j = 0; j < l.size(); j++) {
final String str = l.getID() + " Q0 " + l.get(j).getDescription().replace("#", "").trim() + " " + (j + 1) + " "
+ SimpleMath.round(1.0 - 0.0001 * j, 5) + " indri";
out.write(str);
out.newLine();
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::rank(): ", ex);
}
}
/**
* Use k pre-trained models to re-rank the test rankings. Test rankings will be splitted into k fold, where k=|models|.
* Each model will be used to rank the data from the corresponding fold. Save the output ranking in indri's run format.
* @param modelFiles
* @param testFile
* @param indriRanking
*/
public void rank(final List modelFiles, final String testFile, final String indriRanking) {
final List> trainingData = new ArrayList<>();
final List> testData = new ArrayList<>();
//read all samples
final int nFold = modelFiles.size();
final List samples = readInput(testFile);
logger.info(() -> "Preparing " + nFold + "-fold test data... ");
FeatureManager.prepareCV(samples, nFold, trainingData, testData);
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(indriRanking), "UTF-8"))) {
for (int f = 0; f < nFold; f++) {
final List test = testData.get(f);
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList l : test) {
final double[] scores = new double[l.size()];
for (int j = 0; j < l.size(); j++) {
scores[j] = ranker.eval(l.get(j));
}
final int[] idx = MergeSorter.sort(scores, false);
for (int j = 0; j < idx.length; j++) {
final int k = idx[j];
final String str = l.getID() + " Q0 " + l.get(k).getDescription().replace("#", "").trim() + " " + (j + 1) + " "
+ SimpleMath.round(scores[k], 5) + " indri";
out.write(str);
out.newLine();
}
}
}
} catch (final Exception ex) {
throw RankLibError.create("Error in Evaluator::rank(): ", ex);
}
}
/**
* Similar to the above, except data has already been splitted. The k-th model will be applied on the k-th test file.
* @param modelFiles
* @param testFiles
* @param indriRanking
*/
public void rank(final List modelFiles, final List testFiles, final String indriRanking) {
final int nFold = modelFiles.size();
try (final BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(indriRanking), "UTF-8"))) {
for (int f = 0; f < nFold; f++) {
final List test = readInput(testFiles.get(f));
final Ranker ranker = rFact.loadRankerFromFile(modelFiles.get(f));
final int[] features = ranker.getFeatures();
if (normalize) {
normalize(test, features);
}
for (final RankList l : test) {
final double[] scores = new double[l.size()];
for (int j = 0; j < l.size(); j++) {
scores[j] = ranker.eval(l.get(j));
}
final int[] idx = MergeSorter.sort(scores, false);
for (int j = 0; j < idx.length; j++) {
final int k = idx[j];
final String str = l.getID() + " Q0 " + l.get(k).getDescription().replace("#", "").trim() + " " + (j + 1) + " "
+ SimpleMath.round(scores[k], 5) + " indri";
out.write(str);
out.newLine();
}
}
}
} catch (final IOException ex) {
throw RankLibError.create("Error in Evaluator::rank(): ", ex);
}
}
/**
* Split the input file into two with respect to a specified split size.
* @param sampleFile Input data file
* @param featureDefFile Feature definition file (if it's an empty string, all features in the input file will be used)
* @param percentTrain How much of the input data will be used for training? (the remaining will be reserved for test/validation)
* @param normalize Whether to do normalization.
* @param trainingData [Output] Training data (after splitting)
* @param testData [Output] Test (or validation) data (after splitting)
* @return A list of ids of the features to be used for learning.
*/
private int[] prepareSplit(final String sampleFile, final String featureDefFile, final double percentTrain, final boolean normalize,
final List trainingData, final List testData) {
//read input
final List data = readInput(sampleFile);
//read features
int[] features = readFeature(featureDefFile);
// no features specified ==> use all features in the training file
if (features == null) {
features = FeatureManager.getFeatureFromSampleVector(data);
}
if (normalize) {
normalize(data, features);
}
FeatureManager.prepareSplit(data, percentTrain, trainingData, testData);
return features;
}
/**
* Save systems' performance to file
* @param ids Ranked list IDs.
* @param scores Evaluation score (in whatever measure specified/calculated upstream such as NDCG@k, ERR@k, etc.)
* @param prpFile Output filename.
*/
public void savePerRankListPerformanceFile(final List ids, final List scores, final String prpFile) {
try (BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(prpFile)))) {
for (int i = 0; i < ids.size(); i++) {
out.write(testScorer.name() + " " + ids.get(i) + " " + scores.get(i));
out.newLine();
}
} catch (final Exception ex) {
throw RankLibError.create("Error in Evaluator::savePerRankListPerformanceFile(): ", ex);
}
}
}