ciir.umass.edu.features.LinearNormalizer Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.features;
import java.util.Arrays;
import ciir.umass.edu.learning.DataPoint;
import ciir.umass.edu.learning.RankList;
import ciir.umass.edu.utilities.RankLibError;
/**
* @author Laura Dietz, vdang
*/
public class LinearNormalizer extends Normalizer {
@Override
public void normalize(final RankList rl) {
if (rl.size() == 0) {
throw RankLibError.create("Error in LinearNormalizor::normalize(): The input ranked list is empty");
}
final int nFeature = rl.getFeatureCount();
final int[] fids = new int[nFeature];
for (int i = 1; i <= nFeature; i++) {
fids[i - 1] = i;
}
normalize(rl, fids);
}
@Override
public void normalize(final RankList rl, int[] fids) {
if (rl.size() == 0) {
throw RankLibError.create("Error in LinearNormalizor::normalize(): The input ranked list is empty");
}
//remove duplicate features from the input @fids ==> avoid normalizing the same features multiple times
fids = removeDuplicateFeatures(fids);
final float[] min = new float[fids.length];
final float[] max = new float[fids.length];
Arrays.fill(min, Float.MAX_VALUE);
Arrays.fill(max, Float.MIN_VALUE);
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 0; j < fids.length; j++) {
min[j] = Math.min(min[j], dp.getFeatureValue(fids[j]));
max[j] = Math.max(max[j], dp.getFeatureValue(fids[j]));
}
}
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 0; j < fids.length; j++) {
if (max[j] > min[j]) {
final float value = (dp.getFeatureValue(fids[j]) - min[j]) / (max[j] - min[j]);
dp.setFeatureValue(fids[j], value);
} else {
dp.setFeatureValue(fids[j], 0);
}
}
}
}
@Override
public String name() {
return "linear";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy