ciir.umass.edu.features.SumNormalizor Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.features;
import java.util.Arrays;
import ciir.umass.edu.learning.DataPoint;
import ciir.umass.edu.learning.RankList;
import ciir.umass.edu.utilities.RankLibError;
/**
* @author vdang
*/
public class SumNormalizor extends Normalizer {
@Override
public void normalize(final RankList rl) {
if (rl.size() == 0) {
throw RankLibError.create("Error in SumNormalizor::normalize(): The input ranked list is empty");
}
final int nFeature = rl.getFeatureCount();
final double[] norm = new double[nFeature];
Arrays.fill(norm, 0);
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 1; j <= nFeature; j++) {
norm[j - 1] += Math.abs(dp.getFeatureValue(j));
}
}
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 1; j <= nFeature; j++) {
if (norm[j - 1] > 0) {
dp.setFeatureValue(j, (float) (dp.getFeatureValue(j) / norm[j - 1]));
}
}
}
}
@Override
public void normalize(final RankList rl, int[] fids) {
if (rl.size() == 0) {
throw RankLibError.create("Error in SumNormalizor::normalize(): The input ranked list is empty");
}
//remove duplicate features from the input @fids ==> avoid normalizing the same features multiple times
fids = removeDuplicateFeatures(fids);
final double[] norm = new double[fids.length];
Arrays.fill(norm, 0);
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 0; j < fids.length; j++) {
norm[j] += Math.abs(dp.getFeatureValue(fids[j]));
}
}
for (int i = 0; i < rl.size(); i++) {
final DataPoint dp = rl.get(i);
for (int j = 0; j < fids.length; j++) {
if (norm[j] > 0) {
dp.setFeatureValue(fids[j], (float) (dp.getFeatureValue(fids[j]) / norm[j]));
}
}
}
}
@Override
public String name() {
return "sum";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy