ciir.umass.edu.learning.DataPoint Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning;
import java.util.Arrays;
import ciir.umass.edu.utilities.RankLibError;
/**
* @author vdang
*
* This class implements objects to be ranked. In the context of Information retrieval, each instance is a query-url pair represented by a n-dimentional feature vector.
* It should be general enough for other ranking applications as well (not limited to just IR I hope).
*/
public abstract class DataPoint {
public static boolean missingZero = false;
protected static final int FEATURE_INCREASE = 10;
protected int featureCount = 0;
protected static final float UNKNOWN = Float.NaN;
//attributes
protected float label = 0.0f;//[ground truth] the real label of the data point (e.g. its degree of relevance according to the relevance judgment)
protected String id = "";//id of this data point (e.g. query-id)
protected String description = "";
protected float[] fVals = null; //fVals[0] is un-used. Feature id MUST start from 1
//helper attributes
protected int knownFeatures; // number of known feature values
//internal to learning procedures
protected double cached = -1.0;//the latest evaluation score of the learned model on this data point
protected static boolean isUnknown(final float fVal) {
return Float.isNaN(fVal);
}
protected static String getKey(final String pair) {
return pair.substring(0, pair.indexOf(':'));
}
protected static String getValue(final String pair) {
return pair.substring(pair.lastIndexOf(':') + 1);
}
/**
* Parse the given line of text to construct a dense array of feature values and reset metadata.
* @param text
* @return Dense array of feature values
*/
protected float[] parse(String text) {
int maxFeature = 51;
float[] fval = new float[maxFeature];
Arrays.fill(fval, UNKNOWN);
int lastFeature = -1;
try {
final int idx = text.indexOf('#');
if (idx != -1) {
description = text.substring(idx);
text = text.substring(0, idx).trim();//remove the comment part at the end of the line
}
final String[] fs = text.split("\\s+");
label = Float.parseFloat(fs[0]);
if (label < 0) {
throw RankLibError.create("Relevance label cannot be negative. System will now exit.");
}
id = getValue(fs[1]);
for (int i = 2; i < fs.length; i++) {
knownFeatures++;
final String key = getKey(fs[i]);
final String val = getValue(fs[i]);
final int f = Integer.parseInt(key);
if (f <= 0) {
throw RankLibError.create("Cannot use feature numbering less than or equal to zero. Start your features at 1.");
}
if (f >= maxFeature) {
while (f >= maxFeature) {
maxFeature += FEATURE_INCREASE;
}
final float[] tmp = new float[maxFeature];
System.arraycopy(fval, 0, tmp, 0, fval.length);
Arrays.fill(tmp, fval.length, maxFeature, UNKNOWN);
fval = tmp;
}
fval[f] = Float.parseFloat(val);
if (f > featureCount) {
featureCount = f;
}
if (f > lastFeature) {
lastFeature = f;
}
}
//shrink fVals
final float[] tmp = new float[lastFeature + 1];
System.arraycopy(fval, 0, tmp, 0, lastFeature + 1);
fval = tmp;
} catch (final Exception ex) {
throw RankLibError.create("Error in DataPoint::parse()", ex);
}
return fval;
}
/**
* Get the value of the feature with the given feature ID
* @param fid
* @return
*/
public abstract float getFeatureValue(int fid);
/**
* Set the value of the feature with the given feature ID
* @param fid
* @param fval
*/
public abstract void setFeatureValue(int fid, float fval);
/**
* Sets the value of all features with the provided dense array of feature values
*/
public abstract void setFeatureVector(float[] dfVals);
/**
* Gets the value of all features as a dense array of feature values.
*/
public abstract float[] getFeatureVector();
/**
* Default constructor. No-op.
*/
protected DataPoint() {
};
/**
* The input must have the form:
* @param text
*/
protected DataPoint(final String text) {
setFeatureVector(parse(text));
}
public String getID() {
return id;
}
public void setID(final String id) {
this.id = id;
}
public float getLabel() {
return label;
}
public void setLabel(final float label) {
this.label = label;
}
public String getDescription() {
return description;
}
public void setDescription(final String description) {
this.description = description;
}
public void setCached(final double c) {
cached = c;
}
public double getCached() {
return cached;
}
public void resetCached() {
cached = -100000000.0f;
}
@Override
public String toString() {
final float[] fval = getFeatureVector();
final StringBuilder output = new StringBuilder();
output.append(((int) label) + " " + "qid:" + id + " ");
for (int i = 1; i < fval.length; i++) {
if (!isUnknown(fval[i])) {
output.append(i + ":" + fval[i] + ((i == fval.length - 1) ? "" : " "));
}
}
output.append(" " + description);
return output.toString();
}
public int getFeatureCount() {
return featureCount;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy