ciir.umass.edu.learning.LinearRegRank Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning;
import java.io.BufferedReader;
import java.io.StringReader;
import java.util.Arrays;
import java.util.List;
import java.util.logging.Logger;
import ciir.umass.edu.metric.MetricScorer;
import ciir.umass.edu.utilities.KeyValuePair;
import ciir.umass.edu.utilities.RankLibError;
import ciir.umass.edu.utilities.SimpleMath;
public class LinearRegRank extends Ranker {
private static final Logger logger = Logger.getLogger(LinearRegRank.class.getName());
public static double lambda = 1E-10;//L2-norm regularization parameter
//Local variables
protected double[] weight = null;
public LinearRegRank() {
}
public LinearRegRank(final List samples, final int[] features, final MetricScorer scorer) {
super(samples, features, scorer);
}
@Override
public void init() {
logger.info(() -> "Initializing...");
}
@Override
public void learn() {
logger.info(() -> "Training starts...");
logger.info(() -> "Learning the least square model... ");
//closed form solution: beta = ((xTx - lambda*I)^(-1)) * (xTy)
//where x is an n-by-f matrix (n=#data-points, f=#features), y is an n-element vector of relevance labels
int nVar = 0;
for (final RankList rl : samples) {
final int c = rl.getFeatureCount();
if (c > nVar) {
nVar = c;
}
}
final double[][] xTx = new double[nVar][];
for (int i = 0; i < nVar; i++) {
xTx[i] = new double[nVar];
Arrays.fill(xTx[i], 0.0);
}
final double[] xTy = new double[nVar];
Arrays.fill(xTy, 0.0);
for (int s = 0; s < samples.size(); s++) {
final RankList rl = samples.get(s);
for (int i = 0; i < rl.size(); i++) {
final DataPoint point = rl.get(i);
xTy[nVar - 1] += point.getLabel();
for (int j = 0; j < nVar - 1; j++) {
xTy[j] += point.getFeatureValue(j + 1) * point.getLabel();
for (int k = 0; k < nVar; k++) {
final double t = (k < nVar - 1) ? point.getFeatureValue(k + 1) : 1f;
xTx[j][k] += point.getFeatureValue(j + 1) * t;
}
}
for (int k = 0; k < nVar - 1; k++) {
xTx[nVar - 1][k] += point.getFeatureValue(k + 1);
}
xTx[nVar - 1][nVar - 1] += 1f;
}
}
if (lambda != 0.0)//regularized
{
for (int i = 0; i < xTx.length; i++) {
xTx[i][i] += lambda;
}
}
weight = solve(xTx, xTy);
scoreOnTrainingData = SimpleMath.round(scorer.score(rank(samples)), 4);
logger.info(() -> "Finished sucessfully.");
logger.info(() -> scorer.name() + " on training data: " + scoreOnTrainingData);
if (validationSamples != null) {
bestScoreOnValidationData = scorer.score(rank(validationSamples));
logger.info(() -> scorer.name() + " on validation data: " + SimpleMath.round(bestScoreOnValidationData, 4));
}
}
@Override
public double eval(final DataPoint p) {
double score = weight[weight.length - 1];
for (int i = 0; i < features.length; i++) {
score += weight[i] * p.getFeatureValue(features[i]);
}
return score;
}
@Override
public Ranker createNew() {
return new LinearRegRank();
}
@Override
public String toString() {
String output = "0:" + weight[0] + " ";
for (int i = 0; i < features.length; i++) {
output += features[i] + ":" + weight[i] + ((i == weight.length - 1) ? "" : " ");
}
return output;
}
@Override
public String model() {
String output = "## " + name() + "\n";
output += "## Lambda = " + lambda + "\n";
output += toString();
return output;
}
@Override
public void loadFromString(final String fullText) {
try (final BufferedReader in = new BufferedReader(new StringReader(fullText))) {
String content = "";
KeyValuePair kvp = null;
while ((content = in.readLine()) != null) {
content = content.trim();
if (content.length() == 0) {
continue;
}
if (content.indexOf("##") == 0) {
continue;
}
kvp = new KeyValuePair(content);
break;
}
assert (kvp != null);
final List keys = kvp.keys();
final List values = kvp.values();
weight = new double[keys.size()];
features = new int[keys.size() - 1];//weight =
int idx = 0;
for (int i = 0; i < keys.size(); i++) {
final int fid = Integer.parseInt(keys.get(i));
if (fid > 0) {
features[idx] = fid;
weight[idx] = Double.parseDouble(values.get(i));
idx++;
} else {
weight[weight.length - 1] = Double.parseDouble(values.get(i));
}
}
} catch (final Exception ex) {
throw RankLibError.create("Error in LinearRegRank::load(): ", ex);
}
}
@Override
public void printParameters() {
logger.info(() -> "L2-norm regularization: lambda = " + lambda);
}
@Override
public String name() {
return "Linear Regression";
}
/**
* Solve a system of linear equations Ax=B, in which A has to be a square matrix with the same length as B
* @param A
* @param B
* @return x
*/
protected double[] solve(final double[][] A, final double[] B) {
if (A.length == 0 || B.length == 0) {
throw RankLibError.create("Error: some of the input arrays is empty.");
}
if (A[0].length == 0) {
throw RankLibError.create("Error: some of the input arrays is empty.");
}
if (A.length != B.length) {
throw RankLibError.create("Error: Solving Ax=B: A and B have different dimension.");
}
//init
final double[][] a = new double[A.length][];
final double[] b = new double[B.length];
System.arraycopy(B, 0, b, 0, B.length);
for (int i = 0; i < a.length; i++) {
a[i] = new double[A[i].length];
if (i > 0 && a[i].length != a[i - 1].length) {
throw RankLibError.create("Error: Solving Ax=B: A is NOT a square matrix.");
}
System.arraycopy(A[i], 0, a[i], 0, A[i].length);
}
//apply the gaussian elimination process to convert the matrix A to upper triangular form
for (int j = 0; j < b.length - 1; j++)//loop through all columns of the matrix A
{
final double pivot = a[j][j];
for (int i = j + 1; i < b.length; i++)//loop through all remaining rows
{
final double multiplier = a[i][j] / pivot;
//i-th row = i-th row - (multiplier * j-th row)
for (int k = j + 1; k < b.length; k++) {
a[i][k] -= a[j][k] * multiplier;
}
b[i] -= b[j] * multiplier;
}
}
//a*x=b
//a is now an upper triangular matrix, now the solution x can be obtained with elementary linear algebra
final double[] x = new double[b.length];
final int n = b.length;
x[n - 1] = b[n - 1] / a[n - 1][n - 1];
for (int i = n - 2; i >= 0; i--)//walk back up to the first row -- we only need to care about the right to the diagonal
{
double val = b[i];
for (int j = i + 1; j < n; j++) {
val -= a[i][j] * x[j];
}
x[i] = val / a[i][i];
}
return x;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy