ciir.umass.edu.learning.neuralnet.ListNet Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning.neuralnet;
import java.io.BufferedReader;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Logger;
import ciir.umass.edu.learning.DataPoint;
import ciir.umass.edu.learning.RankList;
import ciir.umass.edu.learning.Ranker;
import ciir.umass.edu.metric.MetricScorer;
import ciir.umass.edu.utilities.RankLibError;
import ciir.umass.edu.utilities.SimpleMath;
public class ListNet extends RankNet {
private static final Logger logger = Logger.getLogger(ListNet.class.getName());
//Parameters
public static int nIteration = 1500;
public static double learningRate = 0.00001;
public static int nHiddenLayer = 0;//FIXED, it doesn't work with hidden layer
public ListNet() {
}
public ListNet(final List samples, final int[] features, final MetricScorer scorer) {
super(samples, features, scorer);
}
protected float[] feedForward(final RankList rl) {
final float[] labels = new float[rl.size()];
for (int i = 0; i < rl.size(); i++) {
addInput(rl.get(i));
propagate(i);
labels[i] = rl.get(i).getLabel();
}
return labels;
}
protected void backPropagate(final float[] labels) {
//back-propagate
final PropParameter p = new PropParameter(labels);
outputLayer.computeDelta(p);//starting at the output layer
//weight update
outputLayer.updateWeight(p);
}
@Override
protected void estimateLoss() {
error = 0.0;
double sumLabelExp = 0;
double sumScoreExp = 0;
for (int i = 0; i < samples.size(); i++) {
final RankList rl = samples.get(i);
final double[] scores = new double[rl.size()];
double err = 0;
for (int j = 0; j < rl.size(); j++) {
scores[j] = eval(rl.get(j));
sumLabelExp += Math.exp(rl.get(j).getLabel());
sumScoreExp += Math.exp(scores[j]);
}
for (int j = 0; j < rl.size(); j++) {
final double p1 = Math.exp(rl.get(j).getLabel()) / sumLabelExp;
final double p2 = (Math.exp(scores[j]) / sumScoreExp);
err += -p1 * SimpleMath.logBase2(p2);
}
error += err / rl.size();
}
lastError = error;
}
@Override
public void init() {
logger.info(() -> "Initializing... ");
//Set up the network
setInputOutput(features.length, 1, 1);
wire();
if (validationSamples != null) {
for (int i = 0; i < layers.size(); i++) {
bestModelOnValidation.add(new ArrayList());
}
}
Neuron.learningRate = learningRate;
}
@Override
public void learn() {
logger.info(() -> "Training starts...");
printLogLn(new int[] { 7, 14, 9, 9 }, new String[] { "#epoch", "C.E. Loss", scorer.name() + "-T", scorer.name() + "-V" });
for (int i = 1; i <= nIteration; i++) {
for (int j = 0; j < samples.size(); j++) {
final float[] labels = feedForward(samples.get(j));
backPropagate(labels);
clearNeuronOutputs();
}
printLog(new int[] { 7, 14 }, new String[] { Integer.toString(i) , Double.toString(SimpleMath.round(error, 6)) });
if (i % 1 == 0) {
scoreOnTrainingData = scorer.score(rank(samples));
printLog(new int[] { 9 }, new String[] {Double.toString(SimpleMath.round(scoreOnTrainingData, 4)) });
if (validationSamples != null) {
final double score = scorer.score(rank(validationSamples));
if (score > bestScoreOnValidationData) {
bestScoreOnValidationData = score;
saveBestModelOnValidation();
}
printLog(new int[] { 9 }, new String[] { Double.toString(SimpleMath.round(score, 4)) });
}
}
flushLog();
}
//if validation data is specified ==> best model on this data has been saved
//we now restore the current model to that best model
if (validationSamples != null) {
restoreBestModelOnValidation();
}
scoreOnTrainingData = SimpleMath.round(scorer.score(rank(samples)), 4);
logger.info(() -> "Finished sucessfully.");
logger.info(() -> scorer.name() + " on training data: " + scoreOnTrainingData);
if (validationSamples != null) {
bestScoreOnValidationData = scorer.score(rank(validationSamples));
logger.info(() -> scorer.name() + " on validation data: " + SimpleMath.round(bestScoreOnValidationData, 4));
}
}
@Override
public double eval(final DataPoint p) {
return super.eval(p);
}
@Override
public Ranker createNew() {
return new ListNet();
}
@Override
public String toString() {
return super.toString();
}
@Override
public String model() {
final StringBuilder output = new StringBuilder();
output.append("## " + name() + "\n");
output.append("## Epochs = " + nIteration + "\n");
output.append("## No. of features = " + features.length + "\n");
//print used features
for (int i = 0; i < features.length; i++) {
output.append(features[i] + ((i == features.length - 1) ? "" : " "));
}
output.append("\n");
//print network information
output.append("0\n");//[# hidden layers, *ALWAYS* 0 since we're using linear net]
//print learned weights
output.append(toString());
return output.toString();
}
@Override
public void loadFromString(final String fullText) {
try (final BufferedReader in = new BufferedReader(new StringReader(fullText))) {
String content = null;
final List l = new ArrayList<>();
while ((content = in.readLine()) != null) {
content = content.trim();
if (content.length() == 0 || content.indexOf("##") == 0) {
continue;
}
l.add(content);
}
//load the network
//the first line contains features information
final String[] tmp = l.get(0).split(" ");
features = new int[tmp.length];
for (int i = 0; i < tmp.length; i++) {
features[i] = Integer.parseInt(tmp[i]);
}
//the 2nd line is a scalar indicating the number of hidden layers
final int nHiddenLayer = Integer.parseInt(l.get(1));
final int[] nn = new int[nHiddenLayer];
//the next @nHiddenLayer lines contain the number of neurons in each layer
int i = 2;
for (; i < 2 + nHiddenLayer; i++) {
nn[i - 2] = Integer.parseInt(l.get(i));
}
//create the network
setInputOutput(features.length, 1);
for (int j = 0; j < nHiddenLayer; j++) {
addHiddenLayer(nn[j]);
}
wire();
//fill in weights
for (; i < l.size(); i++)//loop through all layers
{
final String[] s = l.get(i).split(" ");
final int iLayer = Integer.parseInt(s[0]);//which layer?
final int iNeuron = Integer.parseInt(s[1]);//which neuron?
final Neuron n = layers.get(iLayer).get(iNeuron);
for (int k = 0; k < n.getOutLinks().size(); k++) {
n.getOutLinks().get(k).setWeight(Double.parseDouble(s[k + 2]));
}
}
} catch (final Exception ex) {
throw RankLibError.create("Error in ListNet::load(): ", ex);
}
}
@Override
public void printParameters() {
logger.info(() -> "No. of epochs: " + nIteration);
logger.info(() -> "Learning rate: " + learningRate);
}
@Override
public String name() {
return "ListNet";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy