ciir.umass.edu.learning.neuralnet.ListNeuron Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning.neuralnet;
public class ListNeuron extends Neuron {
protected double[] d1;
protected double[] d2;
@Override
public void computeDelta(final PropParameter param) {
double sumLabelExp = 0;
double sumScoreExp = 0;
for (int i = 0; i < outputs.size(); i++)//outputs[i] ==> the output of the current neuron on the i-th document
{
sumLabelExp += Math.exp(param.labels[i]);
sumScoreExp += Math.exp(outputs.get(i));
}
d1 = new double[outputs.size()];
d2 = new double[outputs.size()];
for (int i = 0; i < outputs.size(); i++) {
d1[i] = Math.exp(param.labels[i]) / sumLabelExp;
d2[i] = Math.exp(outputs.get(i)) / sumScoreExp;
}
}
@Override
public void updateWeight(final PropParameter param) {
Synapse s = null;
for (int k = 0; k < inLinks.size(); k++) {
s = inLinks.get(k);
double dw = 0;
for (int l = 0; l < d1.length; l++) {
dw += (d1[l] - d2[l]) * s.getSource().getOutput(l);
}
dw *= learningRate;
s.setWeightAdjustment(dw);
s.updateWeight();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy