ciir.umass.edu.learning.neuralnet.Neuron Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning.neuralnet;
import java.util.ArrayList;
import java.util.List;
/**
* @author vdang
*
* This class implements individual neurons in the network.
*/
public class Neuron {
public static double momentum = 0.9;
public static double learningRate = 0.001;//0.001;
//protected TransferFunction tfunc = new HyperTangentFunction();
protected TransferFunction tfunc = new LogiFunction();
protected double output;//sigmoid(wsum) (range from 0.0 to 1.0): output for the current input
protected List outputs = null;
protected double delta_i = 0.0;
protected double[] deltas_j = null;
protected List inLinks = null;
protected List outLinks = null;
public Neuron() {
output = 0.0;
inLinks = new ArrayList<>();
outLinks = new ArrayList<>();
outputs = new ArrayList<>();
delta_i = 0.0;
}
public double getOutput() {
return output;
}
public double getOutput(final int k) {
return outputs.get(k);
}
public List getInLinks() {
return inLinks;
}
public List getOutLinks() {
return outLinks;
}
public void setOutput(final double output) {
this.output = output;
}
public void addOutput(final double output) {
outputs.add(output);
}
public void computeOutput() {
Synapse s = null;
double wsum = 0.0;
for (int j = 0; j < inLinks.size(); j++) {
s = inLinks.get(j);
wsum += s.getSource().getOutput() * s.getWeight();
}
output = tfunc.compute(wsum);//using the specified transfer function to compute the output
}
public void computeOutput(final int i) {
Synapse s = null;
double wsum = 0.0;
for (int j = 0; j < inLinks.size(); j++) {
s = inLinks.get(j);
wsum += s.getSource().getOutput(i) * s.getWeight();
}
output = tfunc.compute(wsum);//using the specified transfer function to compute the output
outputs.add(output);
}
public void clearOutputs() {
outputs.clear();
}
/**
* Compute delta for neurons in the output layer. ONLY for neurons in the output layer.
* @param param
*/
public void computeDelta(final PropParameter param) {
final int[][] pairMap = param.pairMap;
final int current = param.current;
delta_i = 0.0;
deltas_j = new double[pairMap[current].length];
for (int k = 0; k < pairMap[current].length; k++) {
final int j = pairMap[current][k];
float weight = 1;
double pij = 0;
if (param.pairWeight == null)//RankNet, no pair-weight needed
{
weight = 1;
pij = 1.0 / (1.0 + Math.exp(outputs.get(current) - outputs.get(j)));//this is in fact not "pij", but "targetValue-pij": 1 - 1/(1+e^{-o_ij})
} else//LambdaRank
{
weight = param.pairWeight[current][k];
pij = param.targetValue[current][k] - 1.0 / (1.0 + Math.exp(-(outputs.get(current) - outputs.get(j))));
}
final double lambda = weight * pij;
delta_i += lambda;
deltas_j[k] = lambda * tfunc.computeDerivative(outputs.get(j));
}
delta_i *= tfunc.computeDerivative(outputs.get(current));
//(delta_i * input_i) - (sum_{delta_j} * input_j) is the *negative* of the gradient, which is the amount of weight should be added to the current weight
//associated to the input_i
}
/**
* Update delta from neurons in the next layer (back-propagate)
*/
public void updateDelta(final PropParameter param) {
final int[][] pairMap = param.pairMap;
final float[][] pairWeight = param.pairWeight;
final int current = param.current;
delta_i = 0;
deltas_j = new double[pairMap[current].length];
for (int k = 0; k < pairMap[current].length; k++) {
final int j = pairMap[current][k];
final float weight = (pairWeight != null) ? pairWeight[current][k] : 1.0F;
double errorSum = 0.0;
for (int l = 0; l < outLinks.size(); l++) {
final Synapse s = outLinks.get(l);
errorSum += s.getTarget().deltas_j[k] * s.weight;
if (k == 0) {
delta_i += s.getTarget().delta_i * s.weight;
}
}
if (k == 0) {
delta_i *= weight * tfunc.computeDerivative(outputs.get(current));
}
deltas_j[k] = errorSum * weight * tfunc.computeDerivative(outputs.get(j));
}
}
/**
* Update weights of incoming links.
*/
public void updateWeight(final PropParameter param) {
Synapse s = null;
for (int k = 0; k < inLinks.size(); k++) {
s = inLinks.get(k);
double sum_j = 0.0;
for (int l = 0; l < deltas_j.length; l++) {
sum_j += deltas_j[l] * s.getSource().getOutput(param.pairMap[param.current][l]);
}
final double dw = learningRate * (delta_i * s.getSource().getOutput(param.current) - sum_j);
s.setWeightAdjustment(dw);
s.updateWeight();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy