ciir.umass.edu.learning.tree.Ensemble Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.learning.tree;
import java.io.ByteArrayInputStream;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import ciir.umass.edu.learning.DataPoint;
import ciir.umass.edu.utilities.RankLibError;
/**
* @author vdang
*/
public class Ensemble {
protected List trees = new ArrayList<>();
protected List weights = new ArrayList<>();
protected int[] features = null;
public Ensemble() {
}
public Ensemble(final Ensemble e) {
trees.addAll(e.trees);
weights.addAll(e.weights);
}
public Ensemble(final String xmlRep) {
try (final InputStream in = new ByteArrayInputStream(xmlRep.getBytes("UTF-8"))) {
final DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
final DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();
final Document doc = dBuilder.parse(in);
final NodeList nl = doc.getElementsByTagName("tree");
final Map fids = new HashMap<>();
for (int i = 0; i < nl.getLength(); i++) {
final Node n = nl.item(i);//each node corresponds to a "tree" (tag)
//create a regression tree from this node
final Split root = create(n.getFirstChild(), fids);
//get the weight for this tree
final float weight = Float.parseFloat(n.getAttributes().getNamedItem("weight").getNodeValue());
//add it to the ensemble
trees.add(new RegressionTree(root));
weights.add(weight);
}
features = new int[fids.keySet().size()];
int i = 0;
for (final Integer fid : fids.keySet()) {
features[i++] = fid;
}
} catch (final Exception ex) {
throw RankLibError.create("Error in Emsemble(xmlRepresentation): ", ex);
}
}
public void add(final RegressionTree tree, final float weight) {
trees.add(tree);
weights.add(weight);
}
public RegressionTree getTree(final int k) {
return trees.get(k);
}
public float getWeight(final int k) {
return weights.get(k);
}
public double variance() {
double var = 0;
for (final RegressionTree tree : trees) {
var += tree.variance();
}
return var;
}
public void remove(final int k) {
trees.remove(k);
weights.remove(k);
}
public int treeCount() {
return trees.size();
}
public int leafCount() {
int count = 0;
for (final RegressionTree tree : trees) {
count += tree.leaves().size();
}
return count;
}
public float eval(final DataPoint dp) {
float s = 0;
for (int i = 0; i < trees.size(); i++) {
s += trees.get(i).eval(dp) * weights.get(i);
}
return s;
}
@Override
public String toString() {
final StringBuilder buf = new StringBuilder(1000);
buf.append("\n");
for (int i = 0; i < trees.size(); i++) {
buf.append("\t\n");
buf.append(trees.get(i).toString("\t\t"));
buf.append("\t \n");
}
buf.append(" \n");
return buf.toString();
}
public int[] getFeatures() {
return features;
}
/**
* Each input node @n corersponds to a tag in the model file.
* @param n
* @return
*/
private Split create(final Node n, final Map fids) {
Split s = null;
if (n.getFirstChild().getNodeName().compareToIgnoreCase("feature") == 0)//this is a split
{
final NodeList nl = n.getChildNodes();
final int fid = Integer.parseInt(nl.item(0).getFirstChild().getNodeValue().trim());//
fids.put(fid, 0);
final float threshold = Float.parseFloat(nl.item(1).getFirstChild().getNodeValue().trim());//
s = new Split(fid, threshold, 0);
s.setLeft(create(nl.item(2), fids));
s.setRight(create(nl.item(3), fids));
} else//this is a stump
{
final float output = Float.parseFloat(n.getFirstChild().getFirstChild().getNodeValue().trim());
s = new Split();
s.setOutput(output);
}
return s;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy