ciir.umass.edu.metric.NDCGScorer Maven / Gradle / Ivy
The newest version!
/*===============================================================================
* Copyright (c) 2010-2012 University of Massachusetts. All Rights Reserved.
*
* Use of the RankLib package is subject to the terms of the software license set
* forth in the LICENSE file included with this software, and also available at
* http://people.cs.umass.edu/~vdang/ranklib_license.html
*===============================================================================
*/
package ciir.umass.edu.metric;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import ciir.umass.edu.learning.RankList;
import ciir.umass.edu.utilities.FileUtils;
import ciir.umass.edu.utilities.RankLibError;
import ciir.umass.edu.utilities.Sorter;
/**
* @author vdang
*/
public class NDCGScorer extends DCGScorer {
private static final Logger logger = Logger.getLogger(NDCGScorer.class.getName());
protected HashMap idealGains = null;
public NDCGScorer() {
super();
idealGains = new HashMap<>();
}
public NDCGScorer(final int k) {
super(k);
idealGains = new HashMap<>();
}
@Override
public MetricScorer copy() {
return new NDCGScorer();
}
@Override
public void loadExternalRelevanceJudgment(final String qrelFile) {
//Queries with external relevance judgment will have their cached ideal gain value overridden
try (BufferedReader in = FileUtils.smartReader(qrelFile)) {
String content = "";
String lastQID = "";
final List rel = new ArrayList<>();
int nQueries = 0;
while ((content = in.readLine()) != null) {
content = content.trim();
if (content.length() == 0) {
continue;
}
final String[] s = content.split(" ");
final String qid = s[0].trim();
final int label = (int) Math.rint(Double.parseDouble(s[3].trim()));
if (!lastQID.isEmpty() && lastQID.compareTo(qid) != 0) {
final int size = (rel.size() > k) ? k : rel.size();
final int[] r = new int[rel.size()];
for (int i = 0; i < rel.size(); i++) {
r[i] = rel.get(i);
}
final double ideal = getIdealDCG(r, size);
idealGains.put(lastQID, ideal);
rel.clear();
nQueries++;
}
lastQID = qid;
rel.add(label);
}
if (rel.size() > 0) {
final int size = (rel.size() > k) ? k : rel.size();
final int[] r = new int[rel.size()];
for (int i = 0; i < rel.size(); i++) {
r[i] = rel.get(i);
}
final double ideal = getIdealDCG(r, size);
idealGains.put(lastQID, ideal);
rel.clear();
nQueries++;
}
if (logger.isLoggable(Level.INFO)) {
logger.info("Relevance judgment file loaded. [#q=" + nQueries + "]");
}
} catch (final IOException ex) {
throw RankLibError.create("Error in NDCGScorer::loadExternalRelevanceJudgment(): ", ex);
}
}
/**
* Compute NDCG at k. NDCG(k) = DCG(k) / DCG_{perfect}(k). Note that the "perfect ranking" must be computed based on the whole list,
* not just top-k portion of the list.
*/
@Override
public double score(final RankList rl) {
if (rl.size() == 0) {
return 0;
}
int size = k;
if (k > rl.size() || k <= 0) {
size = rl.size();
}
final int[] rel = getRelevanceLabels(rl);
double ideal = 0;
final Double d = idealGains.get(rl.getID());
if (d != null) {
ideal = d;
} else {
ideal = getIdealDCG(rel, size);
idealGains.put(rl.getID(), ideal);
}
if (ideal <= 0.0) {
return 0.0;
}
return getDCG(rel, size) / ideal;
}
@Override
public double[][] swapChange(final RankList rl) {
final int size = (rl.size() > k) ? k : rl.size();
//compute the ideal ndcg
final int[] rel = getRelevanceLabels(rl);
double ideal = 0;
final Double d = idealGains.get(rl.getID());
if (d != null) {
ideal = d;
} else {
ideal = getIdealDCG(rel, size);
//idealGains.put(rl.getID(), ideal);//DO *NOT* do caching here. It's not thread-safe.
}
final double[][] changes = new double[rl.size()][];
for (int i = 0; i < rl.size(); i++) {
changes[i] = new double[rl.size()];
Arrays.fill(changes[i], 0);
}
for (int i = 0; i < size; i++) {
for (int j = i + 1; j < rl.size(); j++) {
if (ideal > 0) {
changes[j][i] = changes[i][j] = (discount(i) - discount(j)) * (gain(rel[i]) - gain(rel[j])) / ideal;
}
}
}
return changes;
}
@Override
public String name() {
return "NDCG@" + k;
}
private double getIdealDCG(final int[] rel, final int topK) {
final int[] idx = Sorter.sort(rel, false);
double dcg = 0;
for (int i = 0; i < topK; i++) {
dcg += gain(rel[idx[i]]) * discount(i);
}
return dcg;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy