
default-tables.ru-brf.dis Maven / Gradle / Ivy
# Copyright (C) 2021 Andrey Yakuboy
#
# This file is part of liblouis.
#
# liblouis is free software: you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 2.1 of the
# License, or (at your option) any later version.
#
# liblouis is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with liblouis. If not, see
# .
# This table maps the Cyrillic dot patterns that are defined in
# ru-litbrl.ctb and other Cyrillic tables with dots 7 and 9 to BrailleAscii.
# These dots are simply dropped.
# Note that ru-letters.dis maps Latin to lowercase letters and
# Cyrillic to uppercase letters. But in BrailleAscii this distinction can
# not be made because the Latin and Cyrillic alphabet are translated
# to the same dot patterns.
include en-us-brf.dis
display A 179
display B 1279
display C 1479
display D 14579
display E 1579
display F 12479
display G 124579
display H 12579
display I 2479
display J 24579
display K 1379
display L 12379
display M 13479
display N 134579
display O 13579
display P 123479
display Q 1234579
display R 123579
display S 23479
display T 234579
display U 13679
display W 245679
display X 134679
display Z 135679
display * 1679
display & 1234679
display : 15679
display ( 1235679
display ! 234679
display ) 2345679
display [ 24679
display \\ 125679
display $ 124679
display A 19
display B 129
display C 149
display D 1459
display E 159
display F 1249
display G 12459
display H 1259
display I 249
display J 2459
display K 139
display L 1239
display M 1349
display N 13459
display O 1359
display P 12349
display Q 123459
display R 12359
display S 2349
display T 23459
display U 1369
display W 24569
display X 13469
display Z 13569
display * 169
display & 123469
display : 1569
display ( 123569
display ! 23469
display ) 234569
display [ 2469
display \\ 12569
display $ 12469
display < 12679
display > 34579
display Y 1345679
display ? 145679
display ] 1245679
display % 14679
display / 3479
display + 34679
display V 123679
display < 1269
display > 3459
display Y 134569
display ? 14569
display ] 124569
display % 1469
display / 349
display + 3469
display V 12369
© 2015 - 2025 Weber Informatics LLC | Privacy Policy