All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.databene.benerator.distribution.CumulativeDistributionFunction Maven / Gradle / Ivy

Go to download

benerator is a framework for creating realistic and valid high-volume test data, used for testing (unit/integration/load) and showcase setup. Metadata constraints are imported from systems and/or configuration files. Data can imported from and exported to files and systems, anonymized or generated from scratch. Domain packages provide reusable generators for creating domain-specific data as names and addresses internationalizable in language and region. It is strongly customizable with plugins and configuration options.

There is a newer version: 0.9.8
Show newest version
/*
 * (c) Copyright 2010 by Volker Bergmann. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, is permitted under the terms of the
 * GNU General Public License (GPL).
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * WITHOUT A WARRANTY OF ANY KIND. ALL EXPRESS OR IMPLIED CONDITIONS,
 * REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
 * HEREBY EXCLUDED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

package org.databene.benerator.distribution;

import java.util.List;
import java.util.Random;

import org.databene.benerator.Generator;
import org.databene.benerator.primitive.number.AbstractNumberGenerator;
import org.databene.benerator.sample.ConstantGenerator;
import org.databene.benerator.sample.SampleGenerator;
import org.databene.benerator.util.GeneratorUtil;
import org.databene.commons.Converter;
import org.databene.commons.converter.ConverterManager;

/**
 * {@link Distribution} implementation which uses the inverse of a probability function integral 
 * for efficiently generating numbers with a given probability distribution. 
 * See Random 
 * Number Generation from Non-uniform Distributions.

* Created: 12.03.2010 13:31:16 * @since 0.6.0 * @author Volker Bergmann */ public abstract class CumulativeDistributionFunction implements Distribution { public abstract double cumulativeProbability(double value); public abstract double inverse(double probability); public Generator applyTo(Generator source, boolean unique) { if (unique) throw new IllegalArgumentException(this + " cannot generate unique values"); List allProducts = GeneratorUtil.allProducts(source); if (allProducts.size() == 1) return new ConstantGenerator(allProducts.get(0)); return new SampleGenerator(source.getGeneratedType(), this, unique, allProducts); } public Generator createGenerator( Class numberType, T min, T max, T precision, boolean unique) { if (unique) throw new IllegalArgumentException(this + " cannot generate unique values"); return new IPINumberGenerator(this, numberType, min, max, precision); } @Override public String toString() { return getClass().getSimpleName(); } /** * Generates numbers according to an {@link CumulativeDistributionFunction}.

* Created: 12.03.2010 14:37:33 * @since 0.6.0 * @author Volker Bergmann */ public static class IPINumberGenerator extends AbstractNumberGenerator { private CumulativeDistributionFunction fcn; private Random random = new Random(); private Converter converter; private double minProb; private double probScale; private double minD; private double maxD; private double precisionD; public IPINumberGenerator(CumulativeDistributionFunction fcn, Class targetType, E min, E max, E precision) { super(targetType, min, max, precision); this.fcn = fcn; this.minD = (min != null ? min.doubleValue() : (max != null ? maxD - 9 : 0)); this.maxD = (max != null ? max.doubleValue() : (min != null ? minD + 9 : 0)); this.precisionD = precision.doubleValue(); this.minProb = fcn.cumulativeProbability(minD); this.probScale = fcn.cumulativeProbability(maxD + precisionD) - this.minProb; this.converter = ConverterManager.getInstance().createConverter(Double.class, targetType); } public E generate() { double tmp; double prob = minProb + random.nextDouble() * probScale; tmp = fcn.inverse(prob); tmp = Math.floor((tmp - minD) / precisionD) * precisionD + minD; return converter.convert(tmp); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy