com.vividsolutions.jts.algorithm.Angle Maven / Gradle / Ivy
Show all versions of JTSplus Show documentation
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.algorithm;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.algorithm.CGAlgorithms;
/**
* Utility functions for working with angles.
* Unless otherwise noted, methods in this class express angles in radians.
*/
public class Angle
{
public static final double PI_TIMES_2 = 2.0 * Math.PI;
public static final double PI_OVER_2 = Math.PI / 2.0;
public static final double PI_OVER_4 = Math.PI / 4.0;
/** Constant representing counterclockwise orientation */
public static final int COUNTERCLOCKWISE = CGAlgorithms.COUNTERCLOCKWISE;
/** Constant representing clockwise orientation */
public static final int CLOCKWISE = CGAlgorithms.CLOCKWISE;
/** Constant representing no orientation */
public static final int NONE = CGAlgorithms.COLLINEAR;
/**
* Converts from radians to degrees.
* @param radians an angle in radians
* @return the angle in degrees
*/
public static double toDegrees(double radians) {
return (radians * 180) / (Math.PI);
}
/**
* Converts from degrees to radians.
*
* @param angleDegrees an angle in degrees
* @return the angle in radians
*/
public static double toRadians(double angleDegrees) {
return (angleDegrees * Math.PI) / 180.0;
}
/**
* Returns the angle of the vector from p0 to p1,
* relative to the positive X-axis.
* The angle is normalized to be in the range [ -Pi, Pi ].
*
* @return the normalized angle (in radians) that p0-p1 makes with the positive x-axis.
*/
public static double angle(Coordinate p0, Coordinate p1) {
double dx = p1.x - p0.x;
double dy = p1.y - p0.y;
return Math.atan2(dy, dx);
}
/**
* Returns the angle that the vector from (0,0) to p,
* relative to the positive X-axis.
* The angle is normalized to be in the range ( -Pi, Pi ].
*
* @return the normalized angle (in radians) that p makes with the positive x-axis.
*/
public static double angle(Coordinate p) {
return Math.atan2(p.y, p.x);
}
/**
* Tests whether the angle between p0-p1-p2 is acute.
* An angle is acute if it is less than 90 degrees.
*
* Note: this implementation is not precise (determistic) for angles very close to 90 degrees.
*
* @param p0 an endpoint of the angle
* @param p1 the base of the angle
* @param p2 the other endpoint of the angle
*/
public static boolean isAcute(Coordinate p0, Coordinate p1, Coordinate p2)
{
// relies on fact that A dot B is positive iff A ang B is acute
double dx0 = p0.x - p1.x;
double dy0 = p0.y - p1.y;
double dx1 = p2.x - p1.x;
double dy1 = p2.y - p1.y;
double dotprod = dx0 * dx1 + dy0 * dy1;
return dotprod > 0;
}
/**
* Tests whether the angle between p0-p1-p2 is obtuse.
* An angle is obtuse if it is greater than 90 degrees.
*
* Note: this implementation is not precise (determistic) for angles very close to 90 degrees.
*
* @param p0 an endpoint of the angle
* @param p1 the base of the angle
* @param p2 the other endpoint of the angle
*/
public static boolean isObtuse(Coordinate p0, Coordinate p1, Coordinate p2)
{
// relies on fact that A dot B is negative iff A ang B is obtuse
double dx0 = p0.x - p1.x;
double dy0 = p0.y - p1.y;
double dx1 = p2.x - p1.x;
double dy1 = p2.y - p1.y;
double dotprod = dx0 * dx1 + dy0 * dy1;
return dotprod < 0;
}
/**
* Returns the unoriented smallest angle between two vectors.
* The computed angle will be in the range [0, Pi).
*
* @param tip1 the tip of one vector
* @param tail the tail of each vector
* @param tip2 the tip of the other vector
* @return the angle between tail-tip1 and tail-tip2
*/
public static double angleBetween(Coordinate tip1, Coordinate tail,
Coordinate tip2) {
double a1 = angle(tail, tip1);
double a2 = angle(tail, tip2);
return diff(a1, a2);
}
/**
* Returns the oriented smallest angle between two vectors.
* The computed angle will be in the range (-Pi, Pi].
* A positive result corresponds to a counterclockwise
* (CCW) rotation
* from v1 to v2;
* a negative result corresponds to a clockwise (CW) rotation;
* a zero result corresponds to no rotation.
*
* @param tip1 the tip of v1
* @param tail the tail of each vector
* @param tip2 the tip of v2
* @return the angle between v1 and v2, relative to v1
*/
public static double angleBetweenOriented(Coordinate tip1, Coordinate tail,
Coordinate tip2)
{
double a1 = angle(tail, tip1);
double a2 = angle(tail, tip2);
double angDel = a2 - a1;
// normalize, maintaining orientation
if (angDel <= -Math.PI)
return angDel + PI_TIMES_2;
if (angDel > Math.PI)
return angDel - PI_TIMES_2;
return angDel;
}
/**
* Computes the interior angle between two segments of a ring. The ring is
* assumed to be oriented in a clockwise direction. The computed angle will be
* in the range [0, 2Pi]
*
* @param p0
* a point of the ring
* @param p1
* the next point of the ring
* @param p2
* the next point of the ring
* @return the interior angle based at p1
*/
public static double interiorAngle(Coordinate p0, Coordinate p1, Coordinate p2)
{
double anglePrev = Angle.angle(p1, p0);
double angleNext = Angle.angle(p1, p2);
return Math.abs(angleNext - anglePrev);
}
/**
* Returns whether an angle must turn clockwise or counterclockwise
* to overlap another angle.
*
* @param ang1 an angle (in radians)
* @param ang2 an angle (in radians)
* @return whether a1 must turn CLOCKWISE, COUNTERCLOCKWISE or NONE to
* overlap a2.
*/
public static int getTurn(double ang1, double ang2) {
double crossproduct = Math.sin(ang2 - ang1);
if (crossproduct > 0) {
return COUNTERCLOCKWISE;
}
if (crossproduct < 0) {
return CLOCKWISE;
}
return NONE;
}
/**
* Computes the normalized value of an angle, which is the
* equivalent angle in the range ( -Pi, Pi ].
*
* @param angle the angle to normalize
* @return an equivalent angle in the range (-Pi, Pi]
*/
public static double normalize(double angle)
{
while (angle > Math.PI)
angle -= PI_TIMES_2;
while (angle <= -Math.PI)
angle += PI_TIMES_2;
return angle;
}
/**
* Computes the normalized positive value of an angle, which is the
* equivalent angle in the range [ 0, 2*Pi ).
* E.g.:
*
* - normalizePositive(0.0) = 0.0
*
- normalizePositive(-PI) = PI
*
- normalizePositive(-2PI) = 0.0
*
- normalizePositive(-3PI) = PI
*
- normalizePositive(-4PI) = 0
*
- normalizePositive(PI) = PI
*
- normalizePositive(2PI) = 0.0
*
- normalizePositive(3PI) = PI
*
- normalizePositive(4PI) = 0.0
*
*
* @param angle the angle to normalize, in radians
* @return an equivalent positive angle
*/
public static double normalizePositive(double angle)
{
if (angle < 0.0) {
while (angle < 0.0)
angle += PI_TIMES_2;
// in case round-off error bumps the value over
if (angle >= PI_TIMES_2)
angle = 0.0;
}
else {
while (angle >= PI_TIMES_2)
angle -= PI_TIMES_2;
// in case round-off error bumps the value under
if (angle < 0.0)
angle = 0.0;
}
return angle;
}
/**
* Computes the unoriented smallest difference between two angles.
* The angles are assumed to be normalized to the range [-Pi, Pi].
* The result will be in the range [0, Pi].
*
* @param ang1 the angle of one vector (in [-Pi, Pi] )
* @param ang2 the angle of the other vector (in range [-Pi, Pi] )
* @return the angle (in radians) between the two vectors (in range [0, Pi] )
*/
public static double diff(double ang1, double ang2) {
double delAngle;
if (ang1 < ang2) {
delAngle = ang2 - ang1;
} else {
delAngle = ang1 - ang2;
}
if (delAngle > Math.PI) {
delAngle = (2 * Math.PI) - delAngle;
}
return delAngle;
}
}