com.vividsolutions.jts.algorithm.Centroid Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JTSplus Show documentation
Show all versions of JTSplus Show documentation
JTS Topology Suite 1.14 with additional functions for GeoSpark
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.algorithm;
import com.vividsolutions.jts.geom.*;
/**
* Computes the centroid of a {@link Geometry} of any dimension.
* If the geometry is nominally of higher dimension,
* but has lower effective dimension
* (i.e. contains only components
* having zero length or area),
* the centroid will be computed as for the equivalent lower-dimension geometry.
* If the input geometry is empty, a
* null
Coordinate is returned.
*
* Algorithm
*
* - Dimension 2 - the centroid is computed
* as the weighted sum of the centroids
* of a decomposition of the area into (possibly overlapping) triangles.
* Holes and multipolygons are handled correctly.
* See
http://www.faqs.org/faqs/graphics/algorithms-faq/
* for further details of the basic approach.
*
* - Dimension 1 - Computes the average of the midpoints
* of all line segments weighted by the segment length.
* Zero-length lines are treated as points.
*
*
- Dimension 0 - Compute the average coordinate for all points.
* Repeated points are all included in the average.
*
*
* @version 1.7
*/
public class Centroid
{
/**
* Computes the centroid point of a geometry.
*
* @param geom the geometry to use
* @return the centroid point, or null if the geometry is empty
*/
public static Coordinate getCentroid(Geometry geom)
{
Centroid cent = new Centroid(geom);
return cent.getCentroid();
}
private Coordinate areaBasePt = null;// the point all triangles are based at
private Coordinate triangleCent3 = new Coordinate();// temporary variable to hold centroid of triangle
private double areasum2 = 0; /* Partial area sum */
private Coordinate cg3 = new Coordinate(); // partial centroid sum
// data for linear centroid computation, if needed
private Coordinate lineCentSum = new Coordinate();
private double totalLength = 0.0;
private int ptCount = 0;
private Coordinate ptCentSum = new Coordinate();
/**
* Creates a new instance for computing the centroid of a geometry
*/
public Centroid(Geometry geom)
{
areaBasePt = null;
add(geom);
}
/**
* Adds a Geometry to the centroid total.
*
* @param geom the geometry to add
*/
private void add(Geometry geom)
{
if (geom.isEmpty())
return;
if (geom instanceof Point) {
addPoint(geom.getCoordinate());
}
else if (geom instanceof LineString) {
addLineSegments(geom.getCoordinates());
}
else if (geom instanceof Polygon) {
Polygon poly = (Polygon) geom;
add(poly);
}
else if (geom instanceof GeometryCollection) {
GeometryCollection gc = (GeometryCollection) geom;
for (int i = 0; i < gc.getNumGeometries(); i++) {
add(gc.getGeometryN(i));
}
}
}
/**
* Gets the computed centroid.
*
* @return the computed centroid, or null if the input is empty
*/
public Coordinate getCentroid()
{
/**
* The centroid is computed from the highest dimension components present in the input.
* I.e. areas dominate lineal geometry, which dominates points.
* Degenerate geometry are computed using their effective dimension
* (e.g. areas may degenerate to lines or points)
*/
Coordinate cent = new Coordinate();
if (Math.abs(areasum2) > 0.0) {
/**
* Input contains areal geometry
*/
cent.x = cg3.x / 3 / areasum2;
cent.y = cg3.y / 3 / areasum2;
}
else if (totalLength > 0.0) {
/**
* Input contains lineal geometry
*/
cent.x = lineCentSum.x / totalLength;
cent.y = lineCentSum.y / totalLength;
}
else if (ptCount > 0){
/**
* Input contains puntal geometry only
*/
cent.x = ptCentSum.x / ptCount;
cent.y = ptCentSum.y / ptCount;
}
else {
return null;
}
return cent;
}
private void setBasePoint(Coordinate basePt)
{
if (this.areaBasePt == null)
this.areaBasePt = basePt;
}
private void add(Polygon poly)
{
addShell(poly.getExteriorRing().getCoordinates());
for (int i = 0; i < poly.getNumInteriorRing(); i++) {
addHole(poly.getInteriorRingN(i).getCoordinates());
}
}
private void addShell(Coordinate[] pts)
{
if (pts.length > 0)
setBasePoint(pts[0]);
boolean isPositiveArea = ! CGAlgorithms.isCCW(pts);
for (int i = 0; i < pts.length - 1; i++) {
addTriangle(areaBasePt, pts[i], pts[i+1], isPositiveArea);
}
addLineSegments(pts);
}
private void addHole(Coordinate[] pts)
{
boolean isPositiveArea = CGAlgorithms.isCCW(pts);
for (int i = 0; i < pts.length - 1; i++) {
addTriangle(areaBasePt, pts[i], pts[i+1], isPositiveArea);
}
addLineSegments(pts);
}
private void addTriangle(Coordinate p0, Coordinate p1, Coordinate p2, boolean isPositiveArea)
{
double sign = (isPositiveArea) ? 1.0 : -1.0;
centroid3( p0, p1, p2, triangleCent3 );
double area2 = area2( p0, p1, p2 );
cg3.x += sign * area2 * triangleCent3.x;
cg3.y += sign * area2 * triangleCent3.y;
areasum2 += sign * area2;
}
/**
* Computes three times the centroid of the triangle p1-p2-p3.
* The factor of 3 is
* left in to permit division to be avoided until later.
*/
private static void centroid3( Coordinate p1, Coordinate p2, Coordinate p3, Coordinate c )
{
c.x = p1.x + p2.x + p3.x;
c.y = p1.y + p2.y + p3.y;
return;
}
/**
* Returns twice the signed area of the triangle p1-p2-p3.
* The area is positive if the triangle is oriented CCW, and negative if CW.
*/
private static double area2( Coordinate p1, Coordinate p2, Coordinate p3 )
{
return
(p2.x - p1.x) * (p3.y - p1.y) -
(p3.x - p1.x) * (p2.y - p1.y);
}
/**
* Adds the line segments defined by an array of coordinates
* to the linear centroid accumulators.
*
* @param pts an array of {@link Coordinate}s
*/
private void addLineSegments(Coordinate[] pts)
{
double lineLen = 0.0;
for (int i = 0; i < pts.length - 1; i++) {
double segmentLen = pts[i].distance(pts[i + 1]);
if (segmentLen == 0.0)
continue;
lineLen += segmentLen;
double midx = (pts[i].x + pts[i + 1].x) / 2;
lineCentSum.x += segmentLen * midx;
double midy = (pts[i].y + pts[i + 1].y) / 2;
lineCentSum.y += segmentLen * midy;
}
totalLength += lineLen;
if (lineLen == 0.0 && pts.length > 0)
addPoint(pts[0]);
}
/**
* Adds a point to the point centroid accumulator.
* @param pt a {@link Coordinate}
*/
private void addPoint(Coordinate pt)
{
ptCount += 1;
ptCentSum.x += pt.x;
ptCentSum.y += pt.y;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy