All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.algorithm.NonRobustLineIntersector Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version


/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.algorithm;
import com.vividsolutions.jts.algorithm.LineIntersector;

/**
 *@version 1.7
 */

import com.vividsolutions.jts.geom.*;
//import com.vividsolutions.jts.util.Debug;

/**
 * A non-robust version of {@link LineIntersector}.
 *
 * @version 1.7
 */
public class NonRobustLineIntersector
    extends LineIntersector
{
  /**
   * @return true if both numbers are positive or if both numbers are negative.
   * Returns false if both numbers are zero.
   */
  public static boolean isSameSignAndNonZero(double a, double b) {
    if (a == 0 || b == 0) {
      return false;
    }
    return (a < 0 && b < 0) || (a > 0 && b > 0);
  }


  public NonRobustLineIntersector() {
  }

  public void computeIntersection(
      Coordinate p,
      Coordinate p1,
      Coordinate p2) {
    double a1;
    double b1;
    double c1;
    /*
     *  Coefficients of line eqns.
     */
    double r;
    /*
     *  'Sign' values
     */
    isProper = false;

    /*
     *  Compute a1, b1, c1, where line joining points 1 and 2
     *  is "a1 x  +  b1 y  +  c1  =  0".
     */
    a1 = p2.y - p1.y;
    b1 = p1.x - p2.x;
    c1 = p2.x * p1.y - p1.x * p2.y;

    /*
     *  Compute r3 and r4.
     */
    r = a1 * p.x + b1 * p.y + c1;

    // if r != 0 the point does not lie on the line
    if (r != 0) {
      result = NO_INTERSECTION;
      return;
    }

    // Point lies on line - check to see whether it lies in line segment.

    double dist = rParameter(p1, p2, p);
    if (dist < 0.0 || dist > 1.0) {
      result = NO_INTERSECTION;
      return;
    }

    isProper = true;
    if (p.equals(p1) || p.equals(p2)) {
      isProper = false;
    }
    result = POINT_INTERSECTION;
  }

  protected int computeIntersect(
      Coordinate p1,
      Coordinate p2,
      Coordinate p3,
      Coordinate p4) {
    double a1;
    double b1;
    double c1;
    /*
     *  Coefficients of line eqns.
     */
    double a2;
    /*
     *  Coefficients of line eqns.
     */
    double b2;
    /*
     *  Coefficients of line eqns.
     */
    double c2;
    double r1;
    double r2;
    double r3;
    double r4;
    /*
     *  'Sign' values
     */
    //double denom, offset, num;     /* Intermediate values */

    isProper = false;

    /*
     *  Compute a1, b1, c1, where line joining points 1 and 2
     *  is "a1 x  +  b1 y  +  c1  =  0".
     */
    a1 = p2.y - p1.y;
    b1 = p1.x - p2.x;
    c1 = p2.x * p1.y - p1.x * p2.y;

    /*
     *  Compute r3 and r4.
     */
    r3 = a1 * p3.x + b1 * p3.y + c1;
    r4 = a1 * p4.x + b1 * p4.y + c1;

    /*
     *  Check signs of r3 and r4.  If both point 3 and point 4 lie on
     *  same side of line 1, the line segments do not intersect.
     */
    if (r3 != 0 &&
        r4 != 0 &&
        isSameSignAndNonZero(r3, r4)) {
      return NO_INTERSECTION;
    }

    /*
     *  Compute a2, b2, c2
     */
    a2 = p4.y - p3.y;
    b2 = p3.x - p4.x;
    c2 = p4.x * p3.y - p3.x * p4.y;

    /*
     *  Compute r1 and r2
     */
    r1 = a2 * p1.x + b2 * p1.y + c2;
    r2 = a2 * p2.x + b2 * p2.y + c2;

    /*
     *  Check signs of r1 and r2.  If both point 1 and point 2 lie
     *  on same side of second line segment, the line segments do
     *  not intersect.
     */
    if (r1 != 0 &&
        r2 != 0 &&
        isSameSignAndNonZero(r1, r2)) {
      return NO_INTERSECTION;
    }

    /**
     *  Line segments intersect: compute intersection point.
     */
    double denom = a1 * b2 - a2 * b1;
    if (denom == 0) {
      return computeCollinearIntersection(p1, p2, p3, p4);
    }
    double numX = b1 * c2 - b2 * c1;
    pa.x = numX / denom;
    /*
     *  TESTING ONLY
     *  double valX = (( num < 0 ? num - offset : num + offset ) / denom);
     *  double valXInt = (int) (( num < 0 ? num - offset : num + offset ) / denom);
     *  if (valXInt != pa.x)     // TESTING ONLY
     *  System.out.println(val + " - int: " + valInt + ", floor: " + pa.x);
     */
    double numY = a2 * c1 - a1 * c2;
    pa.y = numY / denom;

    // check if this is a proper intersection BEFORE truncating values,
    // to avoid spurious equality comparisons with endpoints
    isProper = true;
    if (pa.equals(p1) || pa.equals(p2) || pa.equals(p3) || pa.equals(p4)) {
      isProper = false;
    }

    // truncate computed point to precision grid
    // TESTING - don't force coord to be precise
    if (precisionModel != null) {
      precisionModel.makePrecise(pa);
    }
    return POINT_INTERSECTION;
  }


  /*
   *  p1-p2  and p3-p4 are assumed to be collinear (although
   *  not necessarily intersecting). Returns:
   *  DONT_INTERSECT	: the two segments do not intersect
   *  COLLINEAR		: the segments intersect, in the
   *  line segment pa-pb.  pa-pb is in
   *  the same direction as p1-p2
   *  DO_INTERSECT		: the inputLines intersect in a single point
   *  only, pa
   */
  private int computeCollinearIntersection(
      Coordinate p1,
      Coordinate p2,
      Coordinate p3,
      Coordinate p4) {
    double r1;
    double r2;
    double r3;
    double r4;
    Coordinate q3;
    Coordinate q4;
    double t3;
    double t4;
    r1 = 0;
    r2 = 1;
    r3 = rParameter(p1, p2, p3);
    r4 = rParameter(p1, p2, p4);
    // make sure p3-p4 is in same direction as p1-p2
    if (r3 < r4) {
      q3 = p3;
      t3 = r3;
      q4 = p4;
      t4 = r4;
    }
    else {
      q3 = p4;
      t3 = r4;
      q4 = p3;
      t4 = r3;
    }
    // check for no intersection
    if (t3 > r2 || t4 < r1) {
      return NO_INTERSECTION;
    }

    // check for single point intersection
    if (q4 == p1) {
      pa.setCoordinate(p1);
      return POINT_INTERSECTION;
    }
    if (q3 == p2) {
      pa.setCoordinate(p2);
      return POINT_INTERSECTION;
    }

    // intersection MUST be a segment - compute endpoints
    pa.setCoordinate(p1);
    if (t3 > r1) {
      pa.setCoordinate(q3);
    }
    pb.setCoordinate(p2);
    if (t4 < r2) {
      pb.setCoordinate(q4);
    }
    return COLLINEAR_INTERSECTION;
  }

  /**
   *  RParameter computes the parameter for the point p
   *  in the parameterized equation
   *  of the line from p1 to p2.
   *  This is equal to the 'distance' of p along p1-p2
   */
  private double rParameter(Coordinate p1, Coordinate p2, Coordinate p) {
    double r;
    // compute maximum delta, for numerical stability
    // also handle case of p1-p2 being vertical or horizontal
    double dx = Math.abs(p2.x - p1.x);
    double dy = Math.abs(p2.y - p1.y);
    if (dx > dy) {
      r = (p.x - p1.x) / (p2.x - p1.x);
    }
    else {
      r = (p.y - p1.y) / (p2.y - p1.y);
    }
    return r;
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy