All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.algorithm.RobustDeterminant Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version


/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.algorithm;

import com.vividsolutions.jts.geom.Coordinate;

/**
 * @version 1.7
 */

/**
 * Implements an algorithm to compute the
 * sign of a 2x2 determinant for double precision values robustly.
 * It is a direct translation of code developed by Olivier Devillers.
 * 

* The original code carries the following copyright notice: * *

 *************************************************************************
 * Author : Olivier Devillers
 * [email protected]
 * http:/www.inria.fr:/prisme/personnel/devillers/anglais/determinant.html
 * 
 * Olivier Devillers has allowed the code to be distributed under
 * the LGPL (2012-02-16) saying "It is ok for LGPL distribution."
 * 
 **************************************************************************
 *
 **************************************************************************
 *              Copyright (c) 1995  by  INRIA Prisme Project
 *                  BP 93 06902 Sophia Antipolis Cedex, France.
 *                           All rights reserved
 **************************************************************************
 * 
* * @version 1.7 */ public class RobustDeterminant { //public static int callCount = 0; // debugging only /* // test point to allow injecting test code public static int signOfDet2x2(double x1, double y1, double x2, double y2) { int d1 = originalSignOfDet2x2(x1, y1, x2, y2); int d2 = -originalSignOfDet2x2(y1, x1, x2, y2); assert d1 == -d2; return d1; } */ /* * Test code to force a standard ordering of input ordinates. * A possible fix for a rare problem where evaluation is order-dependent. */ /* public static int signOfDet2x2(double x1, double y1, double x2, double y2) { if (x1 > x2) { return -signOfDet2x2ordX(x2, y2, x1, y1); } return signOfDet2x2ordX(x1, y1, x2, y2); } private static int signOfDet2x2ordX(double x1, double y1, double x2, double y2) { if (y1 > y2) { return -originalSignOfDet2x2(y1, x1, y2, x2); } return originalSignOfDet2x2(x1, y1, x2, y2); } // */ /** * Computes the sign of the determinant of the 2x2 matrix * with the given entries, in a robust way. * * @return -1 if the determinant is negative, * @return 1 if the determinant is positive, * @return 0 if the determinant is 0. */ //private static int originalSignOfDet2x2(double x1, double y1, double x2, double y2) { public static int signOfDet2x2(double x1, double y1, double x2, double y2) { // returns -1 if the determinant is negative, // returns 1 if the determinant is positive, // returns 0 if the determinant is null. int sign; double swap; double k; long count = 0; //callCount++; // debugging only sign = 1; /* * testing null entries */ if ((x1 == 0.0) || (y2 == 0.0)) { if ((y1 == 0.0) || (x2 == 0.0)) { return 0; } else if (y1 > 0) { if (x2 > 0) { return -sign; } else { return sign; } } else { if (x2 > 0) { return sign; } else { return -sign; } } } if ((y1 == 0.0) || (x2 == 0.0)) { if (y2 > 0) { if (x1 > 0) { return sign; } else { return -sign; } } else { if (x1 > 0) { return -sign; } else { return sign; } } } /* * making y coordinates positive and permuting the entries */ /* * so that y2 is the biggest one */ if (0.0 < y1) { if (0.0 < y2) { if (y1 <= y2) { ; } else { sign = -sign; swap = x1; x1 = x2; x2 = swap; swap = y1; y1 = y2; y2 = swap; } } else { if (y1 <= -y2) { sign = -sign; x2 = -x2; y2 = -y2; } else { swap = x1; x1 = -x2; x2 = swap; swap = y1; y1 = -y2; y2 = swap; } } } else { if (0.0 < y2) { if (-y1 <= y2) { sign = -sign; x1 = -x1; y1 = -y1; } else { swap = -x1; x1 = x2; x2 = swap; swap = -y1; y1 = y2; y2 = swap; } } else { if (y1 >= y2) { x1 = -x1; y1 = -y1; x2 = -x2; y2 = -y2; ; } else { sign = -sign; swap = -x1; x1 = -x2; x2 = swap; swap = -y1; y1 = -y2; y2 = swap; } } } /* * making x coordinates positive */ /* * if |x2| < |x1| one can conclude */ if (0.0 < x1) { if (0.0 < x2) { if (x1 <= x2) { ; } else { return sign; } } else { return sign; } } else { if (0.0 < x2) { return -sign; } else { if (x1 >= x2) { sign = -sign; x1 = -x1; x2 = -x2; ; } else { return -sign; } } } /* * all entries strictly positive x1 <= x2 and y1 <= y2 */ while (true) { count = count + 1; // MD - UNSAFE HACK for testing only! // k = (int) (x2 / x1); k = Math.floor(x2 / x1); x2 = x2 - k * x1; y2 = y2 - k * y1; /* * testing if R (new U2) is in U1 rectangle */ if (y2 < 0.0) { return -sign; } if (y2 > y1) { return sign; } /* * finding R' */ if (x1 > x2 + x2) { if (y1 < y2 + y2) { return sign; } } else { if (y1 > y2 + y2) { return -sign; } else { x2 = x1 - x2; y2 = y1 - y2; sign = -sign; } } if (y2 == 0.0) { if (x2 == 0.0) { return 0; } else { return -sign; } } if (x2 == 0.0) { return sign; } /* * exchange 1 and 2 role. */ // MD - UNSAFE HACK for testing only! // k = (int) (x1 / x2); k = Math.floor(x1 / x2); x1 = x1 - k * x2; y1 = y1 - k * y2; /* * testing if R (new U1) is in U2 rectangle */ if (y1 < 0.0) { return sign; } if (y1 > y2) { return -sign; } /* * finding R' */ if (x2 > x1 + x1) { if (y2 < y1 + y1) { return -sign; } } else { if (y2 > y1 + y1) { return sign; } else { x1 = x2 - x1; y1 = y2 - y1; sign = -sign; } } if (y1 == 0.0) { if (x1 == 0.0) { return 0; } else { return sign; } } if (x1 == 0.0) { return -sign; } } } /** * Returns the index of the direction of the point q relative to * a vector specified by p1-p2. * * @param p1 the origin point of the vector * @param p2 the final point of the vector * @param q the point to compute the direction to * * @return 1 if q is counter-clockwise (left) from p1-p2 * @return -1 if q is clockwise (right) from p1-p2 * @return 0 if q is collinear with p1-p2 */ public static int orientationIndex(Coordinate p1, Coordinate p2, Coordinate q) { /** * MD - 9 Aug 2010 It seems that the basic algorithm is slightly orientation * dependent, when computing the orientation of a point very close to a * line. This is possibly due to the arithmetic in the translation to the * origin. * * For instance, the following situation produces identical results in spite * of the inverse orientation of the line segment: * * Coordinate p0 = new Coordinate(219.3649559090992, 140.84159161824724); * Coordinate p1 = new Coordinate(168.9018919682399, -5.713787599646864); * * Coordinate p = new Coordinate(186.80814046338352, 46.28973405831556); int * orient = orientationIndex(p0, p1, p); int orientInv = * orientationIndex(p1, p0, p); * * */ double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dx2 = q.x - p2.x; double dy2 = q.y - p2.y; return signOfDet2x2(dx1, dy1, dx2, dy2); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy