com.vividsolutions.jts.geomgraph.index.MonotoneChainEdge Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JTSplus Show documentation
Show all versions of JTSplus Show documentation
JTS Topology Suite 1.14 with additional functions for GeoSpark
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.geomgraph.index;
import java.util.*;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Envelope;
import com.vividsolutions.jts.geomgraph.*;
import com.vividsolutions.jts.util.Debug;
/**
* MonotoneChains are a way of partitioning the segments of an edge to
* allow for fast searching of intersections.
* They have the following properties:
*
* - the segments within a monotone chain will never intersect each other
*
- the envelope of any contiguous subset of the segments in a monotone chain
* is simply the envelope of the endpoints of the subset.
*
* Property 1 means that there is no need to test pairs of segments from within
* the same monotone chain for intersection.
* Property 2 allows
* binary search to be used to find the intersection points of two monotone chains.
* For many types of real-world data, these properties eliminate a large number of
* segment comparisons, producing substantial speed gains.
* @version 1.7
*/
public class MonotoneChainEdge {
Edge e;
Coordinate[] pts; // cache a reference to the coord array, for efficiency
// the lists of start/end indexes of the monotone chains.
// Includes the end point of the edge as a sentinel
int[] startIndex;
// these envelopes are created once and reused
Envelope env1 = new Envelope();
Envelope env2 = new Envelope();
public MonotoneChainEdge(Edge e) {
this.e = e;
pts = e.getCoordinates();
MonotoneChainIndexer mcb = new MonotoneChainIndexer();
startIndex = mcb.getChainStartIndices(pts);
}
public Coordinate[] getCoordinates() { return pts; }
public int[] getStartIndexes() { return startIndex; }
public double getMinX(int chainIndex)
{
double x1 = pts[startIndex[chainIndex]].x;
double x2 = pts[startIndex[chainIndex + 1]].x;
return x1 < x2 ? x1 : x2;
}
public double getMaxX(int chainIndex)
{
double x1 = pts[startIndex[chainIndex]].x;
double x2 = pts[startIndex[chainIndex + 1]].x;
return x1 > x2 ? x1 : x2;
}
public void computeIntersects(MonotoneChainEdge mce, SegmentIntersector si)
{
for (int i = 0; i < startIndex.length - 1; i++) {
for (int j = 0; j < mce.startIndex.length - 1; j++) {
computeIntersectsForChain( i,
mce, j,
si );
}
}
}
public void computeIntersectsForChain(
int chainIndex0,
MonotoneChainEdge mce,
int chainIndex1,
SegmentIntersector si)
{
computeIntersectsForChain(startIndex[chainIndex0], startIndex[chainIndex0 + 1],
mce,
mce.startIndex[chainIndex1], mce.startIndex[chainIndex1 + 1],
si );
}
private void computeIntersectsForChain(
int start0, int end0,
MonotoneChainEdge mce,
int start1, int end1,
SegmentIntersector ei)
{
Coordinate p00 = pts[start0];
Coordinate p01 = pts[end0];
Coordinate p10 = mce.pts[start1];
Coordinate p11 = mce.pts[end1];
//Debug.println("computeIntersectsForChain:" + p00 + p01 + p10 + p11);
// terminating condition for the recursion
if (end0 - start0 == 1 && end1 - start1 == 1) {
ei.addIntersections(e, start0, mce.e, start1);
return;
}
// nothing to do if the envelopes of these chains don't overlap
env1.init(p00, p01);
env2.init(p10, p11);
if (! env1.intersects(env2)) return;
// the chains overlap, so split each in half and iterate (binary search)
int mid0 = (start0 + end0) / 2;
int mid1 = (start1 + end1) / 2;
// Assert: mid != start or end (since we checked above for end - start <= 1)
// check terminating conditions before recursing
if (start0 < mid0) {
if (start1 < mid1) computeIntersectsForChain(start0, mid0, mce, start1, mid1, ei);
if (mid1 < end1) computeIntersectsForChain(start0, mid0, mce, mid1, end1, ei);
}
if (mid0 < end0) {
if (start1 < mid1) computeIntersectsForChain(mid0, end0, mce, start1, mid1, ei);
if (mid1 < end1) computeIntersectsForChain(mid0, end0, mce, mid1, end1, ei);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy