All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.geomgraph.index.MonotoneChainEdge Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version



/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.geomgraph.index;

import java.util.*;

import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Envelope;
import com.vividsolutions.jts.geomgraph.*;
import com.vividsolutions.jts.util.Debug;

/**
 * MonotoneChains are a way of partitioning the segments of an edge to
 * allow for fast searching of intersections.
 * They have the following properties:
 * 
    *
  1. the segments within a monotone chain will never intersect each other *
  2. the envelope of any contiguous subset of the segments in a monotone chain * is simply the envelope of the endpoints of the subset. *
* Property 1 means that there is no need to test pairs of segments from within * the same monotone chain for intersection. * Property 2 allows * binary search to be used to find the intersection points of two monotone chains. * For many types of real-world data, these properties eliminate a large number of * segment comparisons, producing substantial speed gains. * @version 1.7 */ public class MonotoneChainEdge { Edge e; Coordinate[] pts; // cache a reference to the coord array, for efficiency // the lists of start/end indexes of the monotone chains. // Includes the end point of the edge as a sentinel int[] startIndex; // these envelopes are created once and reused Envelope env1 = new Envelope(); Envelope env2 = new Envelope(); public MonotoneChainEdge(Edge e) { this.e = e; pts = e.getCoordinates(); MonotoneChainIndexer mcb = new MonotoneChainIndexer(); startIndex = mcb.getChainStartIndices(pts); } public Coordinate[] getCoordinates() { return pts; } public int[] getStartIndexes() { return startIndex; } public double getMinX(int chainIndex) { double x1 = pts[startIndex[chainIndex]].x; double x2 = pts[startIndex[chainIndex + 1]].x; return x1 < x2 ? x1 : x2; } public double getMaxX(int chainIndex) { double x1 = pts[startIndex[chainIndex]].x; double x2 = pts[startIndex[chainIndex + 1]].x; return x1 > x2 ? x1 : x2; } public void computeIntersects(MonotoneChainEdge mce, SegmentIntersector si) { for (int i = 0; i < startIndex.length - 1; i++) { for (int j = 0; j < mce.startIndex.length - 1; j++) { computeIntersectsForChain( i, mce, j, si ); } } } public void computeIntersectsForChain( int chainIndex0, MonotoneChainEdge mce, int chainIndex1, SegmentIntersector si) { computeIntersectsForChain(startIndex[chainIndex0], startIndex[chainIndex0 + 1], mce, mce.startIndex[chainIndex1], mce.startIndex[chainIndex1 + 1], si ); } private void computeIntersectsForChain( int start0, int end0, MonotoneChainEdge mce, int start1, int end1, SegmentIntersector ei) { Coordinate p00 = pts[start0]; Coordinate p01 = pts[end0]; Coordinate p10 = mce.pts[start1]; Coordinate p11 = mce.pts[end1]; //Debug.println("computeIntersectsForChain:" + p00 + p01 + p10 + p11); // terminating condition for the recursion if (end0 - start0 == 1 && end1 - start1 == 1) { ei.addIntersections(e, start0, mce.e, start1); return; } // nothing to do if the envelopes of these chains don't overlap env1.init(p00, p01); env2.init(p10, p11); if (! env1.intersects(env2)) return; // the chains overlap, so split each in half and iterate (binary search) int mid0 = (start0 + end0) / 2; int mid1 = (start1 + end1) / 2; // Assert: mid != start or end (since we checked above for end - start <= 1) // check terminating conditions before recursing if (start0 < mid0) { if (start1 < mid1) computeIntersectsForChain(start0, mid0, mce, start1, mid1, ei); if (mid1 < end1) computeIntersectsForChain(start0, mid0, mce, mid1, end1, ei); } if (mid0 < end0) { if (start1 < mid1) computeIntersectsForChain(mid0, end0, mce, start1, mid1, ei); if (mid1 < end1) computeIntersectsForChain(mid0, end0, mce, mid1, end1, ei); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy