com.vividsolutions.jts.math.Matrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JTSplus Show documentation
Show all versions of JTSplus Show documentation
JTS Topology Suite 1.14 with additional functions for GeoSpark
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.math;
/**
* Implements some 2D matrix operations
* (in particular, solving systems of linear equations).
*
* @author Martin Davis
*
*/
public class Matrix
{
private static void swapRows(double[][] m, int i, int j)
{
if (i == j) return;
for (int col = 0; col < m[0].length; col++) {
double temp = m[i][col];
m[i][col] = m[j][col];
m[j][col] = temp;
}
}
private static void swapRows(double[] m, int i, int j)
{
if (i == j) return;
double temp = m[i];
m[i] = m[j];
m[j] = temp;
}
/**
* Solves a system of equations using Gaussian Elimination.
* In order to avoid overhead the algorithm runs in-place
* on A - if A should not be modified the client must supply a copy.
*
* @param a an nxn matrix in row/column order )modified by this method)
* @param b a vector of length n
*
* @return a vector containing the solution (if any)
* or null if the system has no or no unique solution
*
* @throws IllegalArgumentException if the matrix is the wrong size
*/
public static double[] solve( double[][] a, double[] b )
{
int n = b.length;
if ( a.length != n || a[0].length != n )
throw new IllegalArgumentException("Matrix A is incorrectly sized");
// Use Gaussian Elimination with partial pivoting.
// Iterate over each row
for (int i = 0; i < n; i++ ) {
// Find the largest pivot in the rows below the current one.
int maxElementRow = i;
for (int j = i + 1; j < n; j++ )
if ( Math.abs( a[j][i] ) > Math.abs( a[maxElementRow][i] ) )
maxElementRow = j;
if ( a[maxElementRow][i] == 0.0 )
return null;
// Exchange current row and maxElementRow in A and b.
swapRows(a, i, maxElementRow );
swapRows(b, i, maxElementRow );
// Eliminate using row i
for (int j = i + 1; j < n; j++ ) {
double rowFactor = a[j][i] / a[i][i];
for (int k = n - 1; k >= i; k-- )
a[j][k] -= a[i][k] * rowFactor;
b[j] -= b[i] * rowFactor;
}
}
/**
* A is now (virtually) in upper-triangular form.
* The solution vector is determined by back-substitution.
*/
double[] solution = new double[n];
for (int j = n - 1; j >= 0; j-- ) {
double t = 0.0;
for (int k = j + 1; k < n; k++ )
t += a[j][k] * solution[k];
solution[j] = ( b[j] - t ) / a[j][j];
}
return solution;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy