com.vividsolutions.jts.math.Vector3D Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JTSplus Show documentation
Show all versions of JTSplus Show documentation
JTS Topology Suite 1.14 with additional functions for GeoSpark
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.math;
import com.vividsolutions.jts.geom.Coordinate;
/**
* Represents a vector in 3-dimensional Cartesian space.
*
* @author mdavis
*
*/
public class Vector3D {
/**
* Computes the dot product of the 3D vectors AB and CD.
*
* @param A
* @param B
* @param C
* @param D
* @return the dot product
*/
public static double dot(Coordinate A, Coordinate B, Coordinate C, Coordinate D)
{
double ABx = B.x - A.x;
double ABy = B.y - A.y;
double ABz = B.z - A.z;
double CDx = D.x - C.x;
double CDy = D.y - C.y;
double CDz = D.z - C.z;
return ABx*CDx + ABy*CDy + ABz*CDz;
}
/**
* Creates a new vector with given X and Y components.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return a new vector
*/
public static Vector3D create(double x, double y, double z) {
return new Vector3D(x, y, z);
}
/**
* Creates a vector from a {@link Coordinate}.
*
* @param coord
* the Coordinate to copy
* @return a new vector
*/
public static Vector3D create(Coordinate coord) {
return new Vector3D(coord);
}
public Vector3D(Coordinate v) {
x = v.x;
y = v.y;
z = v.z;
}
/**
* Computes the 3D dot-product of two {@link Coordinate}s.
*
* @param v1 the first vector
* @param v2 the second vector
* @return the dot product of the vectors
*/
public static double dot(Coordinate v1, Coordinate v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
private double x;
private double y;
private double z;
public Vector3D(Coordinate from, Coordinate to) {
x = to.x - from.x;
y = to.y - from.y;
z = to.z - from.z;
}
public Vector3D(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
/**
* Computes the dot-product of two vectors
*
* @param v
* a vector
* @return the dot product of the vectors
*/
public double dot(Vector3D v) {
return x * v.x + y * v.y + z * v.z;
}
public double length() {
return Math.sqrt(x * x + y * y + z * z);
}
public static double length(Coordinate v) {
return Math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
}
public Vector3D normalize() {
double length = length();
if (length > 0.0)
return divide(length());
return create(0.0, 0.0, 0.0);
}
private Vector3D divide(double d) {
return create(x / d, y / d, z / d);
}
public static Coordinate normalize(Coordinate v) {
double len = length(v);
return new Coordinate(v.x / len, v.y / len, v.z / len);
}
/**
* Gets a string representation of this vector
*
* @return a string representing this vector
*/
public String toString() {
return "[" + x + ", " + y + ", " + z + "]";
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy