All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.operation.buffer.BufferSubgraph Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version


/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.operation.buffer;

/**
 * @version 1.7
 */

import java.util.*;
import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.algorithm.*;
import com.vividsolutions.jts.geomgraph.*;
import com.vividsolutions.jts.util.*;
//import debug.*;

/**
 * A connected subset of the graph of
 * {@link DirectedEdge}s and {@link Node}s.
 * Its edges will generate either
 * 
    *
  • a single polygon in the complete buffer, with zero or more holes, or *
  • one or more connected holes *
* * * @version 1.7 */ class BufferSubgraph implements Comparable { private RightmostEdgeFinder finder; private List dirEdgeList = new ArrayList(); private List nodes = new ArrayList(); private Coordinate rightMostCoord = null; private Envelope env = null; public BufferSubgraph() { finder = new RightmostEdgeFinder(); } public List getDirectedEdges() { return dirEdgeList; } public List getNodes() { return nodes; } /** * Computes the envelope of the edges in the subgraph. * The envelope is cached after being computed. * * @return the envelope of the graph. */ public Envelope getEnvelope() { if (env == null) { Envelope edgeEnv = new Envelope(); for (Iterator it = dirEdgeList.iterator(); it.hasNext(); ) { DirectedEdge dirEdge = (DirectedEdge) it.next(); Coordinate[] pts = dirEdge.getEdge().getCoordinates(); for (int i = 0; i < pts.length - 1; i++) { edgeEnv.expandToInclude(pts[i]); } } env = edgeEnv; } return env; } /** * Gets the rightmost coordinate in the edges of the subgraph */ public Coordinate getRightmostCoordinate() { return rightMostCoord; } /** * Creates the subgraph consisting of all edges reachable from this node. * Finds the edges in the graph and the rightmost coordinate. * * @param node a node to start the graph traversal from */ public void create(Node node) { addReachable(node); finder.findEdge(dirEdgeList); rightMostCoord = finder.getCoordinate(); } /** * Adds all nodes and edges reachable from this node to the subgraph. * Uses an explicit stack to avoid a large depth of recursion. * * @param node a node known to be in the subgraph */ private void addReachable(Node startNode) { Stack nodeStack = new Stack(); nodeStack.add(startNode); while (! nodeStack.empty()) { Node node = (Node) nodeStack.pop(); add(node, nodeStack); } } /** * Adds the argument node and all its out edges to the subgraph * @param node the node to add * @param nodeStack the current set of nodes being traversed */ private void add(Node node, Stack nodeStack) { node.setVisited(true); nodes.add(node); for (Iterator i = ((DirectedEdgeStar) node.getEdges()).iterator(); i.hasNext(); ) { DirectedEdge de = (DirectedEdge) i.next(); dirEdgeList.add(de); DirectedEdge sym = de.getSym(); Node symNode = sym.getNode(); /** * NOTE: this is a depth-first traversal of the graph. * This will cause a large depth of recursion. * It might be better to do a breadth-first traversal. */ if (! symNode.isVisited()) nodeStack.push(symNode); } } private void clearVisitedEdges() { for (Iterator it = dirEdgeList.iterator(); it.hasNext(); ) { DirectedEdge de = (DirectedEdge) it.next(); de.setVisited(false); } } public void computeDepth(int outsideDepth) { clearVisitedEdges(); // find an outside edge to assign depth to DirectedEdge de = finder.getEdge(); Node n = de.getNode(); Label label = de.getLabel(); // right side of line returned by finder is on the outside de.setEdgeDepths(Position.RIGHT, outsideDepth); copySymDepths(de); //computeNodeDepth(n, de); computeDepths(de); } /** * Compute depths for all dirEdges via breadth-first traversal of nodes in graph * @param startEdge edge to start processing with */ // MD - use iteration & queue rather than recursion, for speed and robustness private void computeDepths(DirectedEdge startEdge) { Set nodesVisited = new HashSet(); LinkedList nodeQueue = new LinkedList(); Node startNode = startEdge.getNode(); nodeQueue.addLast(startNode); nodesVisited.add(startNode); startEdge.setVisited(true); while (! nodeQueue.isEmpty()) { //System.out.println(nodes.size() + " queue: " + nodeQueue.size()); Node n = (Node) nodeQueue.removeFirst(); nodesVisited.add(n); // compute depths around node, starting at this edge since it has depths assigned computeNodeDepth(n); // add all adjacent nodes to process queue, // unless the node has been visited already for (Iterator i = ((DirectedEdgeStar) n.getEdges()).iterator(); i.hasNext(); ) { DirectedEdge de = (DirectedEdge) i.next(); DirectedEdge sym = de.getSym(); if (sym.isVisited()) continue; Node adjNode = sym.getNode(); if (! (nodesVisited.contains(adjNode)) ) { nodeQueue.addLast(adjNode); nodesVisited.add(adjNode); } } } } private void computeNodeDepth(Node n) { // find a visited dirEdge to start at DirectedEdge startEdge = null; for (Iterator i = ((DirectedEdgeStar) n.getEdges()).iterator(); i.hasNext(); ) { DirectedEdge de = (DirectedEdge) i.next(); if (de.isVisited() || de.getSym().isVisited()) { startEdge = de; break; } } // MD - testing Result: breaks algorithm //if (startEdge == null) return; // only compute string append if assertion would fail if (startEdge == null) throw new TopologyException("unable to find edge to compute depths at " + n.getCoordinate()); ((DirectedEdgeStar) n.getEdges()).computeDepths(startEdge); // copy depths to sym edges for (Iterator i = ((DirectedEdgeStar) n.getEdges()).iterator(); i.hasNext(); ) { DirectedEdge de = (DirectedEdge) i.next(); de.setVisited(true); copySymDepths(de); } } private void copySymDepths(DirectedEdge de) { DirectedEdge sym = de.getSym(); sym.setDepth(Position.LEFT, de.getDepth(Position.RIGHT)); sym.setDepth(Position.RIGHT, de.getDepth(Position.LEFT)); } /** * Find all edges whose depths indicates that they are in the result area(s). * Since we want polygon shells to be * oriented CW, choose dirEdges with the interior of the result on the RHS. * Mark them as being in the result. * Interior Area edges are the result of dimensional collapses. * They do not form part of the result area boundary. */ public void findResultEdges() { for (Iterator it = dirEdgeList.iterator(); it.hasNext(); ) { DirectedEdge de = (DirectedEdge) it.next(); /** * Select edges which have an interior depth on the RHS * and an exterior depth on the LHS. * Note that because of weird rounding effects there may be * edges which have negative depths! Negative depths * count as "outside". */ // - handle negative depths if ( de.getDepth(Position.RIGHT) >= 1 && de.getDepth(Position.LEFT) <= 0 && ! de.isInteriorAreaEdge()) { de.setInResult(true); //Debug.print("in result "); Debug.println(de); } } } /** * BufferSubgraphs are compared on the x-value of their rightmost Coordinate. * This defines a partial ordering on the graphs such that: *

* g1 >= g2 <==> Ring(g2) does not contain Ring(g1) *

* where Polygon(g) is the buffer polygon that is built from g. *

* This relationship is used to sort the BufferSubgraphs so that shells are guaranteed to * be built before holes. */ public int compareTo(Object o) { BufferSubgraph graph = (BufferSubgraph) o; if (this.rightMostCoord.x < graph.rightMostCoord.x) { return -1; } if (this.rightMostCoord.x > graph.rightMostCoord.x) { return 1; } return 0; } /* // DEBUGGING only - comment out private static final String SAVE_DIREDGES = "saveDirEdges"; private static int saveCount = 0; public void saveDirEdges() { GeometryFactory fact = new GeometryFactory(); for (Iterator it = dirEdgeList.iterator(); it.hasNext(); ) { DirectedEdge de = (DirectedEdge) it.next(); double dx = de.getDx(); double dy = de.getDy(); Coordinate p0 = de.getCoordinate(); double ang = Math.atan2(dy, dx); Coordinate p1 = new Coordinate( p0.x + .4 * Math.cos(ang), p0.y + .4 * Math.sin(ang)); // DebugFeature.add(SAVE_DIREDGES, // fact.createLineString(new Coordinate[] { p0, p1 } ), // de.getDepth(Position.LEFT) + "/" + de.getDepth(Position.RIGHT) // ); } String filepath = "x:\\jts\\testBuffer\\dirEdges" + saveCount++ + ".jml"; DebugFeature.saveFeatures(SAVE_DIREDGES, filepath); } */ }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy