All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.operation.distance3d.Distance3DOp Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version
/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.operation.distance3d;

import com.vividsolutions.jts.algorithm.CGAlgorithms3D;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.CoordinateSequence;
import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.GeometryCollection;
import com.vividsolutions.jts.geom.LineSegment;
import com.vividsolutions.jts.geom.LineString;
import com.vividsolutions.jts.geom.Point;
import com.vividsolutions.jts.geom.Polygon;
import com.vividsolutions.jts.operation.distance.GeometryLocation;

/**
 * Find two points on two 3D {@link Geometry}s which lie within a given distance,
 * or else are the nearest points on the geometries (in which case this also
 * provides the distance between the geometries).
 * 

* 3D geometries have vertex Z ordinates defined. * 3D {@link Polygon}s are assumed to lie in a single plane (which is enforced if not actually the case). * 3D {@link LineString}s and {link Point}s may have any configuration. *

* The distance computation also finds a pair of points in the input geometries * which have the minimum distance between them. If a point lies in the interior * of a line segment, the coordinate computed is a close approximation to the * exact point. *

* The algorithms used are straightforward O(n^2) comparisons. This worst-case * performance could be improved on by using Voronoi techniques or spatial * indexes. * * @version 1.7 */ public class Distance3DOp { /** * Compute the distance between the nearest points of two geometries. * * @param g0 * a {@link Geometry} * @param g1 * another {@link Geometry} * @return the distance between the geometries */ public static double distance(Geometry g0, Geometry g1) { Distance3DOp distOp = new Distance3DOp(g0, g1); return distOp.distance(); } /** * Test whether two geometries lie within a given distance of each other. * * @param g0 * a {@link Geometry} * @param g1 * another {@link Geometry} * @param distance * the distance to test * @return true if g0.distance(g1) <= distance */ public static boolean isWithinDistance(Geometry g0, Geometry g1, double distance) { Distance3DOp distOp = new Distance3DOp(g0, g1, distance); return distOp.distance() <= distance; } /** * Compute the the nearest points of two geometries. The points are * presented in the same order as the input Geometries. * * @param g0 * a {@link Geometry} * @param g1 * another {@link Geometry} * @return the nearest points in the geometries */ public static Coordinate[] nearestPoints(Geometry g0, Geometry g1) { Distance3DOp distOp = new Distance3DOp(g0, g1); return distOp.nearestPoints(); } // input private Geometry[] geom; private double terminateDistance = 0.0; // working private GeometryLocation[] minDistanceLocation; private double minDistance = Double.MAX_VALUE; private boolean isDone = false; /** * Constructs a DistanceOp that computes the distance and nearest points * between the two specified geometries. * * @param g0 * a Geometry * @param g1 * a Geometry */ public Distance3DOp(Geometry g0, Geometry g1) { this(g0, g1, 0.0); } /** * Constructs a DistanceOp that computes the distance and nearest points * between the two specified geometries. * * @param g0 * a Geometry * @param g1 * a Geometry * @param terminateDistance * the distance on which to terminate the search */ public Distance3DOp(Geometry g0, Geometry g1, double terminateDistance) { this.geom = new Geometry[2]; geom[0] = g0; geom[1] = g1; this.terminateDistance = terminateDistance; } /** * Report the distance between the nearest points on the input geometries. * * @return the distance between the geometries, or 0 if either input geometry is empty * @throws IllegalArgumentException * if either input geometry is null */ public double distance() { if (geom[0] == null || geom[1] == null) throw new IllegalArgumentException( "null geometries are not supported"); if (geom[0].isEmpty() || geom[1].isEmpty()) return 0.0; computeMinDistance(); return minDistance; } /** * Report the coordinates of the nearest points in the input geometries. The * points are presented in the same order as the input Geometries. * * @return a pair of {@link Coordinate}s of the nearest points */ public Coordinate[] nearestPoints() { computeMinDistance(); Coordinate[] nearestPts = new Coordinate[] { minDistanceLocation[0].getCoordinate(), minDistanceLocation[1].getCoordinate() }; return nearestPts; } /** * Report the locations of the nearest points in the input geometries. The * locations are presented in the same order as the input Geometries. * * @return a pair of {@link GeometryLocation}s for the nearest points */ public GeometryLocation[] nearestLocations() { computeMinDistance(); return minDistanceLocation; } private void updateDistance(double dist, GeometryLocation loc0, GeometryLocation loc1, boolean flip) { this.minDistance = dist; int index = flip ? 1 : 0; minDistanceLocation[index] = loc0; minDistanceLocation[1-index] = loc1; if (minDistance < terminateDistance) isDone = true; } private void computeMinDistance() { // only compute once if (minDistanceLocation != null) return; minDistanceLocation = new GeometryLocation[2]; int geomIndex = mostPolygonalIndex(); boolean flip = geomIndex == 0; computeMinDistanceMultiMulti(geom[geomIndex], geom[1-geomIndex], flip); } /** * Finds the index of the "most polygonal" input geometry. * This optimizes the computation of the best-fit plane, * since it is cached only for the left-hand geometry. * * @return the index of the most polygonal geometry */ private int mostPolygonalIndex() { int dim0 = geom[0].getDimension(); int dim1 = geom[1].getDimension(); if (dim0 >= 2 && dim1 >= 2) { if (geom[0].getNumPoints() > geom[1].getNumPoints()) return 0; return 1; } // no more than one is dim 2 if (dim0 >= 2) return 0; if (dim1 >= 2) return 1; // both dim <= 1 - don't flip return 0; } private void computeMinDistanceMultiMulti(Geometry g0, Geometry g1, boolean flip) { if (g0 instanceof GeometryCollection) { int n = g0.getNumGeometries(); for (int i = 0; i < n; i++) { Geometry g = g0.getGeometryN(i); computeMinDistanceMultiMulti(g, g1, flip); if (isDone) return; } } else { // handle case of multigeom component being empty if (g0.isEmpty()) return; // compute planar polygon only once for efficiency if (g0 instanceof Polygon) { computeMinDistanceOneMulti(polyPlane(g0), g1, flip); } else computeMinDistanceOneMulti(g0, g1, flip); } } private void computeMinDistanceOneMulti(Geometry g0, Geometry g1, boolean flip) { if (g1 instanceof GeometryCollection) { int n = g1.getNumGeometries(); for (int i = 0; i < n; i++) { Geometry g = g1.getGeometryN(i); computeMinDistanceOneMulti(g0, g, flip); if (isDone) return; } } else { computeMinDistance(g0, g1, flip); } } private void computeMinDistanceOneMulti(PlanarPolygon3D poly, Geometry geom, boolean flip) { if (geom instanceof GeometryCollection) { int n = geom.getNumGeometries(); for (int i = 0; i < n; i++) { Geometry g = geom.getGeometryN(i); computeMinDistanceOneMulti(poly, g, flip); if (isDone) return; } } else { if (geom instanceof Point) { computeMinDistancePolygonPoint(poly, (Point) geom, flip); return; } if (geom instanceof LineString) { computeMinDistancePolygonLine(poly, (LineString) geom, flip); return; } if (geom instanceof Polygon) { computeMinDistancePolygonPolygon(poly, (Polygon) geom, flip); return; } } } /** * Convenience method to create a Plane3DPolygon * @param poly * @return */ private static PlanarPolygon3D polyPlane(Geometry poly) { return new PlanarPolygon3D((Polygon) poly); } private void computeMinDistance(Geometry g0, Geometry g1, boolean flip) { if (g0 instanceof Point) { if (g1 instanceof Point) { computeMinDistancePointPoint((Point) g0, (Point) g1, flip); return; } if (g1 instanceof LineString) { computeMinDistanceLinePoint((LineString) g1, (Point) g0, ! flip); return; } if (g1 instanceof Polygon) { computeMinDistancePolygonPoint(polyPlane(g1), (Point) g0, ! flip); return; } } if (g0 instanceof LineString) { if (g1 instanceof Point) { computeMinDistanceLinePoint((LineString) g0, (Point) g1, flip); return; } if (g1 instanceof LineString) { computeMinDistanceLineLine((LineString) g0, (LineString) g1, flip); return; } if (g1 instanceof Polygon) { computeMinDistancePolygonLine(polyPlane(g1), (LineString) g0, ! flip); return; } } if (g0 instanceof Polygon) { if (g1 instanceof Point) { computeMinDistancePolygonPoint(polyPlane(g0), (Point) g1, flip); return; } if (g1 instanceof LineString) { computeMinDistancePolygonLine(polyPlane(g0), (LineString) g1, flip); return; } if (g1 instanceof Polygon) { computeMinDistancePolygonPolygon(polyPlane(g0), (Polygon) g1, flip); return; } } } /** * Computes distance between two polygons. * * To compute the distance, compute the distance * between the rings of one polygon and the other polygon, * and vice-versa. * If the polygons intersect, then at least one ring must * intersect the other polygon. * Note that it is NOT sufficient to test only the shell rings. * A counter-example is a "figure-8" polygon A * and a simple polygon B at right angles to A, with the ring of B * passing through the holes of A. * The polygons intersect, * but A's shell does not intersect B, and B's shell does not intersect A. * * @param poly0 * @param poly1 * @param geomIndex */ private void computeMinDistancePolygonPolygon(PlanarPolygon3D poly0, Polygon poly1, boolean flip) { computeMinDistancePolygonRings(poly0, poly1, flip); if (isDone) return; PlanarPolygon3D polyPlane1 = new PlanarPolygon3D(poly1); computeMinDistancePolygonRings(polyPlane1, poly0.getPolygon(), flip); } /** * Compute distance between a polygon and the rings of another. * * @param poly * @param ringPoly * @param geomIndex */ private void computeMinDistancePolygonRings(PlanarPolygon3D poly, Polygon ringPoly, boolean flip) { // compute shell ring computeMinDistancePolygonLine(poly, ringPoly.getExteriorRing(), flip); if (isDone) return; // compute hole rings int nHole = ringPoly.getNumInteriorRing(); for (int i = 0; i < nHole; i++) { computeMinDistancePolygonLine(poly, ringPoly.getInteriorRingN(i), flip); if (isDone) return; } } private void computeMinDistancePolygonLine(PlanarPolygon3D poly,LineString line, boolean flip) { // first test if line intersects polygon Coordinate intPt = intersection(poly, line); if (intPt != null) { updateDistance(0, new GeometryLocation(poly.getPolygon(), 0, intPt), new GeometryLocation(line, 0, intPt), flip ); return; } // if no intersection, then compute line distance to polygon rings computeMinDistanceLineLine(poly.getPolygon().getExteriorRing(), line, flip); if (isDone) return; int nHole = poly.getPolygon().getNumInteriorRing(); for (int i = 0; i < nHole; i++) { computeMinDistanceLineLine(poly.getPolygon().getInteriorRingN(i), line, flip); if (isDone) return; } } private Coordinate intersection(PlanarPolygon3D poly,LineString line) { CoordinateSequence seq = line.getCoordinateSequence(); if (seq.size() == 0) return null; // start point of line Coordinate p0 = new Coordinate(); seq.getCoordinate(0, p0); double d0 = poly.getPlane().orientedDistance(p0); // for each segment in the line Coordinate p1 = new Coordinate(); for (int i = 0; i < seq.size() - 1; i++) { seq.getCoordinate(i, p0); seq.getCoordinate(i + 1, p1); double d1 = poly.getPlane().orientedDistance(p1); /** * If the oriented distances of the segment endpoints have the same sign, * the segment does not cross the plane, and is skipped. */ if (d0 * d1 > 0) continue; /** * Compute segment-plane intersection point * which is then used for a point-in-polygon test. * The endpoint distances to the plane d0 and d1 * give the proportional distance of the intersection point * along the segment. */ Coordinate intPt = segmentPoint(p0, p1, d0, d1); // Coordinate intPt = polyPlane.intersection(p0, p1, s0, s1); if (poly.intersects(intPt)) { return intPt; } // shift to next segment d0 = d1; } return null; } private void computeMinDistancePolygonPoint(PlanarPolygon3D polyPlane, Point point, boolean flip) { Coordinate pt = point.getCoordinate(); LineString shell = polyPlane.getPolygon().getExteriorRing(); if (polyPlane.intersects(pt, shell)) { // point is either inside or in a hole int nHole = polyPlane.getPolygon().getNumInteriorRing(); for (int i = 0; i < nHole; i++) { LineString hole = polyPlane.getPolygon().getInteriorRingN(i); if (polyPlane.intersects(pt, hole)) { computeMinDistanceLinePoint(hole, point, flip); return; } } // point is in interior of polygon // distance is distance to polygon plane double dist = Math.abs(polyPlane.getPlane().orientedDistance(pt)); updateDistance(dist, new GeometryLocation(polyPlane.getPolygon(), 0, pt), new GeometryLocation(point, 0, pt), flip ); } // point is outside polygon, so compute distance to shell linework computeMinDistanceLinePoint(shell, point, flip); } private void computeMinDistanceLineLine(LineString line0, LineString line1, boolean flip) { Coordinate[] coord0 = line0.getCoordinates(); Coordinate[] coord1 = line1.getCoordinates(); // brute force approach! for (int i = 0; i < coord0.length - 1; i++) { for (int j = 0; j < coord1.length - 1; j++) { double dist = CGAlgorithms3D.distanceSegmentSegment(coord0[i], coord0[i + 1], coord1[j], coord1[j + 1]); if (dist < minDistance) { minDistance = dist; // TODO: compute closest pts in 3D LineSegment seg0 = new LineSegment(coord0[i], coord0[i + 1]); LineSegment seg1 = new LineSegment(coord1[j], coord1[j + 1]); Coordinate[] closestPt = seg0.closestPoints(seg1); updateDistance(dist, new GeometryLocation(line0, i, closestPt[0]), new GeometryLocation(line1, j, closestPt[1]), flip ); } if (isDone) return; } } } private void computeMinDistanceLinePoint(LineString line,Point point, boolean flip) { Coordinate[] lineCoord = line.getCoordinates(); Coordinate coord = point.getCoordinate(); // brute force approach! for (int i = 0; i < lineCoord.length - 1; i++) { double dist = CGAlgorithms3D.distancePointSegment(coord, lineCoord[i], lineCoord[i + 1]); if (dist < minDistance) { LineSegment seg = new LineSegment(lineCoord[i], lineCoord[i + 1]); Coordinate segClosestPoint = seg.closestPoint(coord); updateDistance(dist, new GeometryLocation(line, i, segClosestPoint), new GeometryLocation(point, 0, coord), flip); } if (isDone) return; } } private void computeMinDistancePointPoint(Point point0, Point point1, boolean flip) { double dist = CGAlgorithms3D.distance( point0.getCoordinate(), point1.getCoordinate()); if (dist < minDistance) { updateDistance(dist, new GeometryLocation(point0, 0, point0.getCoordinate()), new GeometryLocation(point1, 0, point1.getCoordinate()), flip); } } /** * Computes a point at a distance along a segment * specified by two relatively proportional values. * The fractional distance along the segment is d0/(d0+d1). * * @param p0 * start point of the segment * @param p1 * end point of the segment * @param d0 * proportional distance from start point to computed point * @param d1 * proportional distance from computed point to end point * @return the computed point */ private static Coordinate segmentPoint(Coordinate p0, Coordinate p1, double d0, double d1) { if (d0 <= 0) return new Coordinate(p0); if (d1 <= 0) return new Coordinate(p1); double f = Math.abs(d0) / (Math.abs(d0) + Math.abs(d1)); double intx = p0.x + f * (p1.x - p0.x); double inty = p0.y + f * (p1.y - p0.y); double intz = p0.z + f * (p1.z - p0.z); return new Coordinate(intx, inty, intz); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy