All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.operation.polygonize.PolygonizeGraph Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version

/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */


package com.vividsolutions.jts.operation.polygonize;

import java.util.*;
import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.util.Assert;
import com.vividsolutions.jts.planargraph.*;

/**
 * Represents a planar graph of edges that can be used to compute a
 * polygonization, and implements the algorithms to compute the
 * {@link EdgeRings} formed by the graph.
 * 

* The marked flag on {@link DirectedEdge}s is used to indicate that a directed edge * has be logically deleted from the graph. * * @version 1.7 */ class PolygonizeGraph extends PlanarGraph { private static int getDegreeNonDeleted(Node node) { List edges = node.getOutEdges().getEdges(); int degree = 0; for (Iterator i = edges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); if (! de.isMarked()) degree++; } return degree; } private static int getDegree(Node node, long label) { List edges = node.getOutEdges().getEdges(); int degree = 0; for (Iterator i = edges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); if (de.getLabel() == label) degree++; } return degree; } /** * Deletes all edges at a node */ public static void deleteAllEdges(Node node) { List edges = node.getOutEdges().getEdges(); for (Iterator i = edges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); de.setMarked(true); PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) de.getSym(); if (sym != null) sym.setMarked(true); } } private GeometryFactory factory; //private List labelledRings; /** * Create a new polygonization graph. */ public PolygonizeGraph(GeometryFactory factory) { this.factory = factory; } /** * Add a {@link LineString} forming an edge of the polygon graph. * @param line the line to add */ public void addEdge(LineString line) { if (line.isEmpty()) { return; } Coordinate[] linePts = CoordinateArrays.removeRepeatedPoints(line.getCoordinates()); if (linePts.length < 2) { return; } Coordinate startPt = linePts[0]; Coordinate endPt = linePts[linePts.length - 1]; Node nStart = getNode(startPt); Node nEnd = getNode(endPt); DirectedEdge de0 = new PolygonizeDirectedEdge(nStart, nEnd, linePts[1], true); DirectedEdge de1 = new PolygonizeDirectedEdge(nEnd, nStart, linePts[linePts.length - 2], false); Edge edge = new PolygonizeEdge(line); edge.setDirectedEdges(de0, de1); add(edge); } private Node getNode(Coordinate pt) { Node node = findNode(pt); if (node == null) { node = new Node(pt); // ensure node is only added once to graph add(node); } return node; } private void computeNextCWEdges() { // set the next pointers for the edges around each node for (Iterator iNode = nodeIterator(); iNode.hasNext(); ) { Node node = (Node) iNode.next(); computeNextCWEdges(node); } } /** * Convert the maximal edge rings found by the initial graph traversal * into the minimal edge rings required by JTS polygon topology rules. * * @param ringEdges the list of start edges for the edgeRings to convert. */ private void convertMaximalToMinimalEdgeRings(List ringEdges) { for (Iterator i = ringEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); long label = de.getLabel(); List intNodes = findIntersectionNodes(de, label); if (intNodes == null) continue; // flip the next pointers on the intersection nodes to create minimal edge rings for (Iterator iNode = intNodes.iterator(); iNode.hasNext(); ) { Node node = (Node) iNode.next(); computeNextCCWEdges(node, label); } } } /** * Finds all nodes in a maximal edgering which are self-intersection nodes * @param startDE * @param label * @return the list of intersection nodes found, * or null if no intersection nodes were found */ private static List findIntersectionNodes(PolygonizeDirectedEdge startDE, long label) { PolygonizeDirectedEdge de = startDE; List intNodes = null; do { Node node = de.getFromNode(); if (getDegree(node, label) > 1) { if (intNodes == null) intNodes = new ArrayList(); intNodes.add(node); } de = de.getNext(); Assert.isTrue(de != null, "found null DE in ring"); Assert.isTrue(de == startDE || ! de.isInRing(), "found DE already in ring"); } while (de != startDE); return intNodes; } /** * Computes the minimal EdgeRings formed by the edges in this graph. * @return a list of the {@link EdgeRing}s found by the polygonization process. */ public List getEdgeRings() { // maybe could optimize this, since most of these pointers should be set correctly already // by deleteCutEdges() computeNextCWEdges(); // clear labels of all edges in graph label(dirEdges, -1); List maximalRings = findLabeledEdgeRings(dirEdges); convertMaximalToMinimalEdgeRings(maximalRings); // find all edgerings (which will now be minimal ones, as required) List edgeRingList = new ArrayList(); for (Iterator i = dirEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); if (de.isMarked()) continue; if (de.isInRing()) continue; EdgeRing er = findEdgeRing(de); edgeRingList.add(er); } return edgeRingList; } /** * Finds and labels all edgerings in the graph. * The edge rings are labeling with unique integers. * The labeling allows detecting cut edges. * * @param dirEdges a List of the DirectedEdges in the graph * @return a List of DirectedEdges, one for each edge ring found */ private static List findLabeledEdgeRings(Collection dirEdges) { List edgeRingStarts = new ArrayList(); // label the edge rings formed long currLabel = 1; for (Iterator i = dirEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); if (de.isMarked()) continue; if (de.getLabel() >= 0) continue; edgeRingStarts.add(de); List edges = EdgeRing.findDirEdgesInRing(de); label(edges, currLabel); currLabel++; } return edgeRingStarts; } /** * Finds and removes all cut edges from the graph. * @return a list of the {@link LineString}s forming the removed cut edges */ public List deleteCutEdges() { computeNextCWEdges(); // label the current set of edgerings findLabeledEdgeRings(dirEdges); /** * Cut Edges are edges where both dirEdges have the same label. * Delete them, and record them */ List cutLines = new ArrayList(); for (Iterator i = dirEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); if (de.isMarked()) continue; PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) de.getSym(); if (de.getLabel() == sym.getLabel()) { de.setMarked(true); sym.setMarked(true); // save the line as a cut edge PolygonizeEdge e = (PolygonizeEdge) de.getEdge(); cutLines.add(e.getLine()); } } return cutLines; } private static void label(Collection dirEdges, long label) { for (Iterator i = dirEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); de.setLabel(label); } } private static void computeNextCWEdges(Node node) { DirectedEdgeStar deStar = node.getOutEdges(); PolygonizeDirectedEdge startDE = null; PolygonizeDirectedEdge prevDE = null; // the edges are stored in CCW order around the star for (Iterator i = deStar.getEdges().iterator(); i.hasNext(); ) { PolygonizeDirectedEdge outDE = (PolygonizeDirectedEdge) i.next(); if (outDE.isMarked()) continue; if (startDE == null) startDE = outDE; if (prevDE != null) { PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) prevDE.getSym(); sym.setNext(outDE); } prevDE = outDE; } if (prevDE != null) { PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) prevDE.getSym(); sym.setNext(startDE); } } /** * Computes the next edge pointers going CCW around the given node, for the * given edgering label. * This algorithm has the effect of converting maximal edgerings into minimal edgerings */ private static void computeNextCCWEdges(Node node, long label) { DirectedEdgeStar deStar = node.getOutEdges(); //PolyDirectedEdge lastInDE = null; PolygonizeDirectedEdge firstOutDE = null; PolygonizeDirectedEdge prevInDE = null; // the edges are stored in CCW order around the star List edges = deStar.getEdges(); //for (Iterator i = deStar.getEdges().iterator(); i.hasNext(); ) { for (int i = edges.size() - 1; i >= 0; i--) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) edges.get(i); PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) de.getSym(); PolygonizeDirectedEdge outDE = null; if ( de.getLabel() == label) outDE = de; PolygonizeDirectedEdge inDE = null; if ( sym.getLabel() == label) inDE = sym; if (outDE == null && inDE == null) continue; // this edge is not in edgering if (inDE != null) { prevInDE = inDE; } if (outDE != null) { if (prevInDE != null) { prevInDE.setNext(outDE); prevInDE = null; } if (firstOutDE == null) firstOutDE = outDE; } } if (prevInDE != null) { Assert.isTrue(firstOutDE != null); prevInDE.setNext(firstOutDE); } } private EdgeRing findEdgeRing(PolygonizeDirectedEdge startDE) { EdgeRing er = new EdgeRing(factory); er.build(startDE); return er; } /** * Marks all edges from the graph which are "dangles". * Dangles are which are incident on a node with degree 1. * This process is recursive, since removing a dangling edge * may result in another edge becoming a dangle. * In order to handle large recursion depths efficiently, * an explicit recursion stack is used * * @return a List containing the {@link LineString}s that formed dangles */ public Collection deleteDangles() { List nodesToRemove = findNodesOfDegree(1); Set dangleLines = new HashSet(); Stack nodeStack = new Stack(); for (Iterator i = nodesToRemove.iterator(); i.hasNext(); ) { nodeStack.push(i.next()); } while (! nodeStack.isEmpty()) { Node node = (Node) nodeStack.pop(); deleteAllEdges(node); List nodeOutEdges = node.getOutEdges().getEdges(); for (Iterator i = nodeOutEdges.iterator(); i.hasNext(); ) { PolygonizeDirectedEdge de = (PolygonizeDirectedEdge) i.next(); // delete this edge and its sym de.setMarked(true); PolygonizeDirectedEdge sym = (PolygonizeDirectedEdge) de.getSym(); if (sym != null) sym.setMarked(true); // save the line as a dangle PolygonizeEdge e = (PolygonizeEdge) de.getEdge(); dangleLines.add(e.getLine()); Node toNode = de.getToNode(); // add the toNode to the list to be processed, if it is now a dangle if (getDegreeNonDeleted(toNode) == 1) nodeStack.push(toNode); } } return dangleLines; } /** * Traverses the polygonized edge rings in the graph * and computes the depth parity (odd or even) * relative to the exterior of the graph. * If the client has requested that the output * be polygonally valid, only odd polygons will be constructed. * */ public void computeDepthParity() { while (true) { PolygonizeDirectedEdge de = null; //findLowestDirEdge(); if (de == null) return; computeDepthParity(de); } } /** * Traverses all connected edges, computing the depth parity * of the associated polygons. * * @param de */ private void computeDepthParity(PolygonizeDirectedEdge de) { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy