com.vividsolutions.jts.triangulate.ConformingDelaunayTriangulationBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of JTSplus Show documentation
Show all versions of JTSplus Show documentation
JTS Topology Suite 1.14 with additional functions for GeoSpark
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.triangulate;
import java.util.*;
import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.geom.util.*;
import com.vividsolutions.jts.triangulate.quadedge.*;
/**
* A utility class which creates Conforming Delaunay Trianglulations
* from collections of points and linear constraints, and extract the resulting
* triangulation edges or triangles as geometries.
*
* @author Martin Davis
*
*/
public class ConformingDelaunayTriangulationBuilder
{
private Collection siteCoords;
private Geometry constraintLines;
private double tolerance = 0.0;
private QuadEdgeSubdivision subdiv = null;
private Map constraintVertexMap = new TreeMap();
public ConformingDelaunayTriangulationBuilder()
{
}
/**
* Sets the sites (point or vertices) which will be triangulated.
* All vertices of the given geometry will be used as sites.
* The site vertices do not have to contain the constraint
* vertices as well; any site vertices which are
* identical to a constraint vertex will be removed
* from the site vertex set.
*
* @param geom the geometry from which the sites will be extracted.
*/
public void setSites(Geometry geom)
{
siteCoords = DelaunayTriangulationBuilder.extractUniqueCoordinates(geom);
}
/**
* Sets the linear constraints to be conformed to.
* All linear components in the input will be used as constraints.
* The constraint vertices do not have to be disjoint from
* the site vertices.
* The constraints must not contain duplicate segments (up to orientation).
*
* @param constraintLines the lines to constraint to
*/
public void setConstraints(Geometry constraintLines)
{
this.constraintLines = constraintLines;
}
/**
* Sets the snapping tolerance which will be used
* to improved the robustness of the triangulation computation.
* A tolerance of 0.0 specifies that no snapping will take place.
*
* @param tolerance the tolerance distance to use
*/
public void setTolerance(double tolerance)
{
this.tolerance = tolerance;
}
private void create()
{
if (subdiv != null) return;
Envelope siteEnv = DelaunayTriangulationBuilder.envelope(siteCoords);
List segments = new ArrayList();
if (constraintLines != null) {
siteEnv.expandToInclude(constraintLines.getEnvelopeInternal());
createVertices(constraintLines);
segments = createConstraintSegments(constraintLines);
}
List sites = createSiteVertices(siteCoords);
ConformingDelaunayTriangulator cdt = new ConformingDelaunayTriangulator(sites, tolerance);
cdt.setConstraints(segments, new ArrayList(constraintVertexMap.values()));
cdt.formInitialDelaunay();
cdt.enforceConstraints();
subdiv = cdt.getSubdivision();
}
private List createSiteVertices(Collection coords)
{
List verts = new ArrayList();
for (Iterator i = coords.iterator(); i.hasNext(); ) {
Coordinate coord = (Coordinate) i.next();
if (constraintVertexMap.containsKey(coord))
continue;
verts.add(new ConstraintVertex(coord));
}
return verts;
}
private void createVertices(Geometry geom)
{
Coordinate[] coords = geom.getCoordinates();
for (int i = 0; i < coords.length; i++) {
Vertex v = new ConstraintVertex(coords[i]);
constraintVertexMap.put(coords[i], v);
}
}
private static List createConstraintSegments(Geometry geom)
{
List lines = LinearComponentExtracter.getLines(geom);
List constraintSegs = new ArrayList();
for (Iterator i = lines.iterator(); i.hasNext(); ) {
LineString line = (LineString) i.next();
createConstraintSegments(line, constraintSegs);
}
return constraintSegs;
}
private static void createConstraintSegments(LineString line, List constraintSegs)
{
Coordinate[] coords = line.getCoordinates();
for (int i = 1; i < coords.length; i++) {
constraintSegs.add(new Segment(coords[i-1], coords[i]));
}
}
/**
* Gets the QuadEdgeSubdivision which models the computed triangulation.
*
* @return the subdivision containing the triangulation
*/
public QuadEdgeSubdivision getSubdivision()
{
create();
return subdiv;
}
/**
* Gets the edges of the computed triangulation as a {@link MultiLineString}.
*
* @param geomFact the geometry factory to use to create the output
* @return the edges of the triangulation
*/
public Geometry getEdges(GeometryFactory geomFact)
{
create();
return subdiv.getEdges(geomFact);
}
/**
* Gets the faces of the computed triangulation as a {@link GeometryCollection}
* of {@link Polygon}.
*
* @param geomFact the geometry factory to use to create the output
* @return the faces of the triangulation
*/
public Geometry getTriangles(GeometryFactory geomFact)
{
create();
return subdiv.getTriangles(geomFact);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy