All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.algorithm.Angle Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version
/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.algorithm;

import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.algorithm.CGAlgorithms;

/**
 * Utility functions for working with angles.
 * Unless otherwise noted, methods in this class express angles in radians.
 */
public class Angle
{
  public static final double PI_TIMES_2 = 2.0 * Math.PI;
  public static final double PI_OVER_2 = Math.PI / 2.0;
  public static final double PI_OVER_4 = Math.PI / 4.0;

  /** Constant representing counterclockwise orientation */
  public static final int COUNTERCLOCKWISE = CGAlgorithms.COUNTERCLOCKWISE;

  /** Constant representing clockwise orientation */
  public static final int CLOCKWISE = CGAlgorithms.CLOCKWISE;

  /** Constant representing no orientation */
  public static final int NONE = CGAlgorithms.COLLINEAR;

  /**
   * Converts from radians to degrees.
   * @param radians an angle in radians
   * @return the angle in degrees
   */
  public static double toDegrees(double radians) {
      return (radians * 180) / (Math.PI);
  }

  /**
   * Converts from degrees to radians.
   *
   * @param angleDegrees an angle in degrees
   * @return the angle in radians
   */
  public static double toRadians(double angleDegrees) {
      return (angleDegrees * Math.PI) / 180.0;
  }


  /**
   * Returns the angle of the vector from p0 to p1,
   * relative to the positive X-axis.
   * The angle is normalized to be in the range [ -Pi, Pi ].
   *
   * @return the normalized angle (in radians) that p0-p1 makes with the positive x-axis.
   */
  public static double angle(Coordinate p0, Coordinate p1) {
      double dx = p1.x - p0.x;
      double dy = p1.y - p0.y;
      return Math.atan2(dy, dx);
  }

  /**
   * Returns the angle that the vector from (0,0) to p,
   * relative to the positive X-axis.
   * The angle is normalized to be in the range ( -Pi, Pi ].
   *
   * @return the normalized angle (in radians) that p makes with the positive x-axis.
   */
  public static double angle(Coordinate p) {
      return Math.atan2(p.y, p.x);
  }


  /**
   * Tests whether the angle between p0-p1-p2 is acute.
   * An angle is acute if it is less than 90 degrees.
   * 

* Note: this implementation is not precise (determistic) for angles very close to 90 degrees. * * @param p0 an endpoint of the angle * @param p1 the base of the angle * @param p2 the other endpoint of the angle */ public static boolean isAcute(Coordinate p0, Coordinate p1, Coordinate p2) { // relies on fact that A dot B is positive iff A ang B is acute double dx0 = p0.x - p1.x; double dy0 = p0.y - p1.y; double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dotprod = dx0 * dx1 + dy0 * dy1; return dotprod > 0; } /** * Tests whether the angle between p0-p1-p2 is obtuse. * An angle is obtuse if it is greater than 90 degrees. *

* Note: this implementation is not precise (determistic) for angles very close to 90 degrees. * * @param p0 an endpoint of the angle * @param p1 the base of the angle * @param p2 the other endpoint of the angle */ public static boolean isObtuse(Coordinate p0, Coordinate p1, Coordinate p2) { // relies on fact that A dot B is negative iff A ang B is obtuse double dx0 = p0.x - p1.x; double dy0 = p0.y - p1.y; double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dotprod = dx0 * dx1 + dy0 * dy1; return dotprod < 0; } /** * Returns the unoriented smallest angle between two vectors. * The computed angle will be in the range [0, Pi). * * @param tip1 the tip of one vector * @param tail the tail of each vector * @param tip2 the tip of the other vector * @return the angle between tail-tip1 and tail-tip2 */ public static double angleBetween(Coordinate tip1, Coordinate tail, Coordinate tip2) { double a1 = angle(tail, tip1); double a2 = angle(tail, tip2); return diff(a1, a2); } /** * Returns the oriented smallest angle between two vectors. * The computed angle will be in the range (-Pi, Pi]. * A positive result corresponds to a counterclockwise * (CCW) rotation * from v1 to v2; * a negative result corresponds to a clockwise (CW) rotation; * a zero result corresponds to no rotation. * * @param tip1 the tip of v1 * @param tail the tail of each vector * @param tip2 the tip of v2 * @return the angle between v1 and v2, relative to v1 */ public static double angleBetweenOriented(Coordinate tip1, Coordinate tail, Coordinate tip2) { double a1 = angle(tail, tip1); double a2 = angle(tail, tip2); double angDel = a2 - a1; // normalize, maintaining orientation if (angDel <= -Math.PI) return angDel + PI_TIMES_2; if (angDel > Math.PI) return angDel - PI_TIMES_2; return angDel; } /** * Computes the interior angle between two segments of a ring. The ring is * assumed to be oriented in a clockwise direction. The computed angle will be * in the range [0, 2Pi] * * @param p0 * a point of the ring * @param p1 * the next point of the ring * @param p2 * the next point of the ring * @return the interior angle based at p1 */ public static double interiorAngle(Coordinate p0, Coordinate p1, Coordinate p2) { double anglePrev = Angle.angle(p1, p0); double angleNext = Angle.angle(p1, p2); return Math.abs(angleNext - anglePrev); } /** * Returns whether an angle must turn clockwise or counterclockwise * to overlap another angle. * * @param ang1 an angle (in radians) * @param ang2 an angle (in radians) * @return whether a1 must turn CLOCKWISE, COUNTERCLOCKWISE or NONE to * overlap a2. */ public static int getTurn(double ang1, double ang2) { double crossproduct = Math.sin(ang2 - ang1); if (crossproduct > 0) { return COUNTERCLOCKWISE; } if (crossproduct < 0) { return CLOCKWISE; } return NONE; } /** * Computes the normalized value of an angle, which is the * equivalent angle in the range ( -Pi, Pi ]. * * @param angle the angle to normalize * @return an equivalent angle in the range (-Pi, Pi] */ public static double normalize(double angle) { while (angle > Math.PI) angle -= PI_TIMES_2; while (angle <= -Math.PI) angle += PI_TIMES_2; return angle; } /** * Computes the normalized positive value of an angle, which is the * equivalent angle in the range [ 0, 2*Pi ). * E.g.: *

    *
  • normalizePositive(0.0) = 0.0 *
  • normalizePositive(-PI) = PI *
  • normalizePositive(-2PI) = 0.0 *
  • normalizePositive(-3PI) = PI *
  • normalizePositive(-4PI) = 0 *
  • normalizePositive(PI) = PI *
  • normalizePositive(2PI) = 0.0 *
  • normalizePositive(3PI) = PI *
  • normalizePositive(4PI) = 0.0 *
* * @param angle the angle to normalize, in radians * @return an equivalent positive angle */ public static double normalizePositive(double angle) { if (angle < 0.0) { while (angle < 0.0) angle += PI_TIMES_2; // in case round-off error bumps the value over if (angle >= PI_TIMES_2) angle = 0.0; } else { while (angle >= PI_TIMES_2) angle -= PI_TIMES_2; // in case round-off error bumps the value under if (angle < 0.0) angle = 0.0; } return angle; } /** * Computes the unoriented smallest difference between two angles. * The angles are assumed to be normalized to the range [-Pi, Pi]. * The result will be in the range [0, Pi]. * * @param ang1 the angle of one vector (in [-Pi, Pi] ) * @param ang2 the angle of the other vector (in range [-Pi, Pi] ) * @return the angle (in radians) between the two vectors (in range [0, Pi] ) */ public static double diff(double ang1, double ang2) { double delAngle; if (ang1 < ang2) { delAngle = ang2 - ang1; } else { delAngle = ang1 - ang2; } if (delAngle > Math.PI) { delAngle = (2 * Math.PI) - delAngle; } return delAngle; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy