com.vividsolutions.jts.algorithm.NonRobustCGAlgorithms Maven / Gradle / Ivy
Show all versions of JTSplus Show documentation
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.algorithm;
import com.vividsolutions.jts.geom.Coordinate;
/**
* Non-robust versions of various fundamental Computational Geometric algorithms,
* FOR TESTING PURPOSES ONLY!.
* The non-robustness is due to rounding error in floating point computation.
*
* @version 1.7
*/
public class NonRobustCGAlgorithms
extends CGAlgorithms
{
public NonRobustCGAlgorithms() {
}
/**
* Computes whether a ring defined by an array of {@link Coordinate} is
* oriented counter-clockwise.
*
* This will handle coordinate lists which contain repeated points.
*
* @param ring an array of coordinates forming a ring
* @return true
if the ring is oriented counter-clockwise.
* @throws IllegalArgumentException if the ring is degenerate (does not contain 3 different points)
*/
public static boolean isPointInRing(Coordinate p, Coordinate[] ring)
{
int i, i1; // point index; i1 = i-1 mod n
double xInt; // x intersection of e with ray
int crossings = 0; // number of edge/ray crossings
double x1,y1,x2,y2;
int nPts = ring.length;
/* For each line edge l = (i-1, i), see if it crosses ray from test point in positive x direction. */
for (i = 1; i < nPts; i++ ) {
i1 = i - 1;
Coordinate p1 = ring[i];
Coordinate p2 = ring[i1];
x1 = p1.x - p.x;
y1 = p1.y - p.y;
x2 = p2.x - p.x;
y2 = p2.y - p.y;
if( ( ( y1 > 0 ) && ( y2 <= 0 ) ) ||
( ( y2 > 0 ) && ( y1 <= 0 ) ) ) {
/* e straddles x axis, so compute intersection. */
xInt = (x1 * y2 - x2 * y1) / (y2 - y1);
//xsave = xInt;
/* crosses ray if strictly positive intersection. */
if (0.0 < xInt)
crossings++;
}
}
/* p is inside if an odd number of crossings. */
if( (crossings % 2) == 1 )
return true;
else
return false;
}
/**
* Computes whether a ring defined by an array of {@link Coordinate} is
* oriented counter-clockwise.
*
* This will handle coordinate lists which contain repeated points.
*
* @param ring an array of coordinates forming a ring
* @return true
if the ring is oriented counter-clockwise.
* @throws IllegalArgumentException if the ring is degenerate (does not contain 3 different points)
*/
public static boolean isCCW(Coordinate[] ring)
{
// # of points without closing endpoint
int nPts = ring.length - 1;
// check that this is a valid ring - if not, simply return a dummy value
if (nPts < 4) return false;
// algorithm to check if a Ring is stored in CCW order
// find highest point
Coordinate hip = ring[0];
int hii = 0;
for (int i = 1; i <= nPts; i++) {
Coordinate p = ring[i];
if (p.y > hip.y) {
hip = p;
hii = i;
}
}
// find different point before highest point
int iPrev = hii;
do {
iPrev = (iPrev - 1) % nPts;
} while (ring[iPrev].equals(hip) && iPrev != hii);
// find different point after highest point
int iNext = hii;
do {
iNext = (iNext + 1) % nPts;
} while (ring[iNext].equals(hip) && iNext != hii);
Coordinate prev = ring[iPrev];
Coordinate next = ring[iNext];
if (prev.equals(hip) || next.equals(hip) || prev.equals(next))
throw new IllegalArgumentException("degenerate ring (does not contain 3 different points)");
// translate so that hip is at the origin.
// This will not affect the area calculation, and will avoid
// finite-accuracy errors (i.e very small vectors with very large coordinates)
// This also simplifies the discriminant calculation.
double prev2x = prev.x - hip.x;
double prev2y = prev.y - hip.y;
double next2x = next.x - hip.x;
double next2y = next.y - hip.y;
// compute cross-product of vectors hip->next and hip->prev
// (e.g. area of parallelogram they enclose)
double disc = next2x * prev2y - next2y * prev2x;
/* If disc is exactly 0, lines are collinear. There are two possible cases:
(1) the lines lie along the x axis in opposite directions
(2) the line lie on top of one another
(2) should never happen, so we're going to ignore it!
(Might want to assert this)
(1) is handled by checking if next is left of prev ==> CCW
*/
if (disc == 0.0) {
// poly is CCW if prev x is right of next x
return (prev.x > next.x);
}
else {
// if area is positive, points are ordered CCW
return (disc > 0.0);
}
}
/**
* Computes the orientation of a point q to the directed line segment p1-p2.
* The orientation of a point relative to a directed line segment indicates
* which way you turn to get to q after travelling from p1 to p2.
*
* @return 1 if q is counter-clockwise from p1-p2
* @return -1 if q is clockwise from p1-p2
* @return 0 if q is collinear with p1-p2
*/
public static int computeOrientation(Coordinate p1, Coordinate p2, Coordinate q) {
return orientationIndex(p1, p2, q);
}
/**
* Returns the index of the direction of the point q
relative to
* a vector specified by p1-p2
.
*
* @param p1
* the origin point of the vector
* @param p2
* the final point of the vector
* @param q
* the point to compute the direction to
*
* @return 1 if q is counter-clockwise (left) from p1-p2
* @return -1 if q is clockwise (right) from p1-p2
* @return 0 if q is collinear with p1-p2
*/
public static int orientationIndex(Coordinate p1, Coordinate p2, Coordinate q)
{
double dx1 = p2.x - p1.x;
double dy1 = p2.y - p1.y;
double dx2 = q.x - p2.x;
double dy2 = q.y - p2.y;
double det = dx1*dy2 - dx2*dy1;
if (det > 0.0) return 1;
if (det < 0.0) return -1;
return 0;
}
/**
* Computes the distance from a line segment AB to a line segment CD
*
* Note: NON-ROBUST!
*
* @param A
* a point of one line
* @param B
* the second point of (must be different to A)
* @param C
* one point of the line
* @param D
* another point of the line (must be different to A)
*/
public static double distanceLineLine(Coordinate A, Coordinate B,
Coordinate C, Coordinate D)
{
// check for zero-length segments
if (A.equals(B))
return distancePointLine(A, C, D);
if (C.equals(D))
return distancePointLine(D, A, B);
// AB and CD are line segments
/*
* from comp.graphics.algo
*
* Solving the above for r and s yields (Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy) r =
* ----------------------------- (eqn 1) (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
*
* (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) s = ----------------------------- (eqn 2)
* (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx) Let P be the position vector of the
* intersection point, then P=A+r(B-A) or Px=Ax+r(Bx-Ax) Py=Ay+r(By-Ay) By
* examining the values of r & s, you can also determine some other limiting
* conditions: If 0<=r<=1 & 0<=s<=1, intersection exists r<0 or r>1 or s<0
* or s>1 line segments do not intersect If the denominator in eqn 1 is
* zero, AB & CD are parallel If the numerator in eqn 1 is also zero, AB &
* CD are collinear.
*/
double r_top = (A.y - C.y) * (D.x - C.x) - (A.x - C.x) * (D.y - C.y);
double r_bot = (B.x - A.x) * (D.y - C.y) - (B.y - A.y) * (D.x - C.x);
double s_top = (A.y - C.y) * (B.x - A.x) - (A.x - C.x) * (B.y - A.y);
double s_bot = (B.x - A.x) * (D.y - C.y) - (B.y - A.y) * (D.x - C.x);
if ((r_bot == 0) || (s_bot == 0)) {
return Math
.min(
distancePointLine(A, C, D),
Math.min(
distancePointLine(B, C, D),
Math.min(distancePointLine(C, A, B),
distancePointLine(D, A, B))));
}
double s = s_top / s_bot;
double r = r_top / r_bot;
if ((r < 0) || (r > 1) || (s < 0) || (s > 1)) {
// no intersection
return Math
.min(
distancePointLine(A, C, D),
Math.min(
distancePointLine(B, C, D),
Math.min(distancePointLine(C, A, B),
distancePointLine(D, A, B))));
}
return 0.0; // intersection exists
}
}