All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.index.strtree.STRtree Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version

/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.index.strtree;

import com.vividsolutions.jts.index.strtree.AbstractSTRtree;

import java.io.Serializable;
import java.util.*;

import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.util.*;
import com.vividsolutions.jts.util.PriorityQueue;
import com.vividsolutions.jts.index.*;

/**
 *  A query-only R-tree created using the Sort-Tile-Recursive (STR) algorithm.
 *  For two-dimensional spatial data.
 * 

* The STR packed R-tree is simple to implement and maximizes space * utilization; that is, as many leaves as possible are filled to capacity. * Overlap between nodes is far less than in a basic R-tree. However, once the * tree has been built (explicitly or on the first call to #query), items may * not be added or removed. *

* Described in: P. Rigaux, Michel Scholl and Agnes Voisard. * Spatial Databases With Application To GIS. * Morgan Kaufmann, San Francisco, 2002. *

* This class is thread-safe. Building the tree is synchronized, * and querying is stateless. * * @version 1.7 */ public class STRtree extends AbstractSTRtree implements SpatialIndex, Serializable { private static final class STRtreeNode extends AbstractNode { private STRtreeNode(int level) { super(level); } protected Object computeBounds() { Envelope bounds = null; for (Iterator i = getChildBoundables().iterator(); i.hasNext(); ) { Boundable childBoundable = (Boundable) i.next(); if (bounds == null) { bounds = new Envelope((Envelope)childBoundable.getBounds()); } else { bounds.expandToInclude((Envelope)childBoundable.getBounds()); } } return bounds; } } /** * */ private static final long serialVersionUID = 259274702368956900L; private static Comparator xComparator = new Comparator() { public int compare(Object o1, Object o2) { return compareDoubles( centreX((Envelope)((Boundable)o1).getBounds()), centreX((Envelope)((Boundable)o2).getBounds())); } }; private static Comparator yComparator = new Comparator() { public int compare(Object o1, Object o2) { return compareDoubles( centreY((Envelope)((Boundable)o1).getBounds()), centreY((Envelope)((Boundable)o2).getBounds())); } }; private static double centreX(Envelope e) { return avg(e.getMinX(), e.getMaxX()); } private static double centreY(Envelope e) { return avg(e.getMinY(), e.getMaxY()); } private static double avg(double a, double b) { return (a + b) / 2d; } private static IntersectsOp intersectsOp = new IntersectsOp() { public boolean intersects(Object aBounds, Object bBounds) { return ((Envelope)aBounds).intersects((Envelope)bBounds); } }; /** * Creates the parent level for the given child level. First, orders the items * by the x-values of the midpoints, and groups them into vertical slices. * For each slice, orders the items by the y-values of the midpoints, and * group them into runs of size M (the node capacity). For each run, creates * a new (parent) node. */ protected List createParentBoundables(List childBoundables, int newLevel) { Assert.isTrue(!childBoundables.isEmpty()); int minLeafCount = (int) Math.ceil((childBoundables.size() / (double) getNodeCapacity())); ArrayList sortedChildBoundables = new ArrayList(childBoundables); Collections.sort(sortedChildBoundables, xComparator); List[] verticalSlices = verticalSlices(sortedChildBoundables, (int) Math.ceil(Math.sqrt(minLeafCount))); return createParentBoundablesFromVerticalSlices(verticalSlices, newLevel); } private List createParentBoundablesFromVerticalSlices(List[] verticalSlices, int newLevel) { Assert.isTrue(verticalSlices.length > 0); List parentBoundables = new ArrayList(); for (int i = 0; i < verticalSlices.length; i++) { parentBoundables.addAll( createParentBoundablesFromVerticalSlice(verticalSlices[i], newLevel)); } return parentBoundables; } protected List createParentBoundablesFromVerticalSlice(List childBoundables, int newLevel) { return super.createParentBoundables(childBoundables, newLevel); } /** * @param childBoundables Must be sorted by the x-value of the envelope midpoints */ protected List[] verticalSlices(List childBoundables, int sliceCount) { int sliceCapacity = (int) Math.ceil(childBoundables.size() / (double) sliceCount); List[] slices = new List[sliceCount]; Iterator i = childBoundables.iterator(); for (int j = 0; j < sliceCount; j++) { slices[j] = new ArrayList(); int boundablesAddedToSlice = 0; while (i.hasNext() && boundablesAddedToSlice < sliceCapacity) { Boundable childBoundable = (Boundable) i.next(); slices[j].add(childBoundable); boundablesAddedToSlice++; } } return slices; } private static final int DEFAULT_NODE_CAPACITY = 10; /** * Constructs an STRtree with the default node capacity. */ public STRtree() { this(DEFAULT_NODE_CAPACITY); } /** * Constructs an STRtree with the given maximum number of child nodes that * a node may have. *

* The minimum recommended capacity setting is 4. * */ public STRtree(int nodeCapacity) { super(nodeCapacity); } protected AbstractNode createNode(int level) { return new STRtreeNode(level); } protected IntersectsOp getIntersectsOp() { return intersectsOp; } /** * Inserts an item having the given bounds into the tree. */ public void insert(Envelope itemEnv, Object item) { if (itemEnv.isNull()) { return; } super.insert(itemEnv, item); } /** * Returns items whose bounds intersect the given envelope. */ public List query(Envelope searchEnv) { //Yes this method does something. It specifies that the bounds is an //Envelope. super.query takes an Object, not an Envelope. [Jon Aquino 10/24/2003] return super.query(searchEnv); } /** * Returns items whose bounds intersect the given envelope. */ public void query(Envelope searchEnv, ItemVisitor visitor) { //Yes this method does something. It specifies that the bounds is an //Envelope. super.query takes an Object, not an Envelope. [Jon Aquino 10/24/2003] super.query(searchEnv, visitor); } /** * Removes a single item from the tree. * * @param itemEnv the Envelope of the item to remove * @param item the item to remove * @return true if the item was found */ public boolean remove(Envelope itemEnv, Object item) { return super.remove(itemEnv, item); } /** * Returns the number of items in the tree. * * @return the number of items in the tree */ public int size() { return super.size(); } /** * Returns the number of items in the tree. * * @return the number of items in the tree */ public int depth() { return super.depth(); } protected Comparator getComparator() { return yComparator; } /** * Finds the two nearest items in the tree, * using {@link ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. * * @param itemDist a distance metric applicable to the items in this tree * @return the pair of the nearest items */ public Object[] nearestNeighbour(ItemDistance itemDist) { BoundablePair bp = new BoundablePair(this.getRoot(), this.getRoot(), itemDist); return nearestNeighbour(bp); } /** * Finds the item in this tree which is nearest to the given {@link Object}, * using {@link ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. *

* The query object does not have to be * contained in the tree, but it does * have to be compatible with the itemDist * distance metric. * * @param env the envelope of the query item * @param item the item to find the nearest neighbour of * @param itemDist a distance metric applicable to the items in this tree and the query item * @return the nearest item in this tree */ public Object nearestNeighbour(Envelope env, Object item, ItemDistance itemDist) { Boundable bnd = new ItemBoundable(env, item); BoundablePair bp = new BoundablePair(this.getRoot(), bnd, itemDist); return nearestNeighbour(bp)[0]; } /** * Finds the item in this tree which is nearest to the given {@link Object}, * using {@link ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. *

* The query object does not have to be * contained in the tree, but it does * have to be compatible with the itemDist * distance metric. * * @param env the envelope of the query item * @param item the item to find the nearest neighbour of * @param itemDist a distance metric applicable to the items in this tree and the query item * @param k the K nearest items in KNN * @return the K nearest items in this tree */ public Object[] kNearestNeighbour(Envelope env, Object item, ItemDistance itemDist,int k) { Boundable bnd = new ItemBoundable(env, item); BoundablePair bp = new BoundablePair(this.getRoot(), bnd, itemDist); return nearestNeighbour(bp,k); } /** * Finds the two nearest items from this tree * and another tree, * using {@link ItemDistance} as the distance metric. * A Branch-and-Bound tree traversal algorithm is used * to provide an efficient search. * The result value is a pair of items, * the first from this tree and the second * from the argument tree. * * @param tree another tree * @param itemDist a distance metric applicable to the items in the trees * @return the pair of the nearest items, one from each tree */ public Object[] nearestNeighbour(STRtree tree, ItemDistance itemDist) { BoundablePair bp = new BoundablePair(this.getRoot(), tree.getRoot(), itemDist); return nearestNeighbour(bp); } private Object[] nearestNeighbour(BoundablePair initBndPair) { return nearestNeighbour(initBndPair, Double.POSITIVE_INFINITY); } private Object[] nearestNeighbour(BoundablePair initBndPair, int k) { return nearestNeighbour(initBndPair, Double.POSITIVE_INFINITY,k); } private Object[] nearestNeighbour(BoundablePair initBndPair, double maxDistance) { double distanceLowerBound = maxDistance; BoundablePair minPair = null; // initialize internal structures PriorityQueue priQ = new PriorityQueue(); // initialize queue priQ.add(initBndPair); while (! priQ.isEmpty() && distanceLowerBound > 0.0) { // pop head of queue and expand one side of pair BoundablePair bndPair = (BoundablePair) priQ.poll(); double currentDistance = bndPair.getDistance(); /** * If the distance for the first node in the queue * is >= the current minimum distance, all other nodes * in the queue must also have a greater distance. * So the current minDistance must be the true minimum, * and we are done. */ if (currentDistance >= distanceLowerBound) break; /** * If the pair members are leaves * then their distance is the exact lower bound. * Update the distanceLowerBound to reflect this * (which must be smaller, due to the test * immediately prior to this). */ if (bndPair.isLeaves()) { // assert: currentDistance < minimumDistanceFound distanceLowerBound = currentDistance; minPair = bndPair; } else { // testing - does allowing a tolerance improve speed? // Ans: by only about 10% - not enough to matter /* double maxDist = bndPair.getMaximumDistance(); if (maxDist * .99 < lastComputedDistance) return; //*/ /** * Otherwise, expand one side of the pair, * (the choice of which side to expand is heuristically determined) * and insert the new expanded pairs into the queue */ bndPair.expandToQueue(priQ, distanceLowerBound); } } // done - return items with min distance return new Object[] { ((ItemBoundable) minPair.getBoundable(0)).getItem(), ((ItemBoundable) minPair.getBoundable(1)).getItem() }; } private Object[] nearestNeighbour(BoundablePair initBndPair, double maxDistance, int k) { /* * This method implements the KNN algorithm described in the following paper: * Roussopoulos, Nick, Stephen Kelley, and Frédéric Vincent. "Nearest neighbor queries." ACM sigmod record. Vol. 24. No. 2. ACM, 1995. * We only use the minDistance and ignore minmaxDistance. */ double distanceLowerBound = maxDistance; // initialize internal structures PriorityQueue priQ = new PriorityQueue(); // initialize queue priQ.add(initBndPair); java.util.PriorityQueue kNearestNeighbors = new java.util.PriorityQueue(k, new BoundablePairComparator(false)); while (! priQ.isEmpty() && distanceLowerBound >= 0.0) { // pop head of queue and expand one side of pair BoundablePair bndPair = (BoundablePair) priQ.poll(); double currentDistance = bndPair.getDistance(); /** * If the distance for the first node in the queue * is >= the current maximum distance in the k queue , all other nodes * in the queue must also have a greater distance. * So the current minDistance must be the true minimum, * and we are done. */ if (currentDistance >= distanceLowerBound){ break; } /** * If the pair members are leaves * then their distance is the exact lower bound. * Update the distanceLowerBound to reflect this * (which must be smaller, due to the test * immediately prior to this). */ if (bndPair.isLeaves()) { // assert: currentDistance < minimumDistanceFound if(kNearestNeighbors.size()currentDistance) { kNearestNeighbors.poll(); kNearestNeighbors.add(bndPair); } /* * minDistance should be the farthest point in the K nearest neighbor queue. */ distanceLowerBound = kNearestNeighbors.peek().getDistance(); } } else { // testing - does allowing a tolerance improve speed? // Ans: by only about 10% - not enough to matter /* double maxDist = bndPair.getMaximumDistance(); if (maxDist * .99 < lastComputedDistance) return; //*/ /** * Otherwise, expand one side of the pair, * (the choice of which side to expand is heuristically determined) * and insert the new expanded pairs into the queue */ bndPair.expandToQueue(priQ, distanceLowerBound); } } // done - return items with min distance Object[] result = new Object[kNearestNeighbors.size()]; Iterator resultIterator = kNearestNeighbors.iterator(); int count=0; while(resultIterator.hasNext()) { result[count]=((ItemBoundable)resultIterator.next().getBoundable(0)).getItem(); count++; } return result; } /** * This method is to find the boundaries of leaf nodes. * @return Return the list of boundaries we find. */ public List queryBoundary() { return super.queryBoundary(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy