All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.triangulate.ConformingDelaunayTriangulator Maven / Gradle / Ivy

There is a newer version: 0.1.4
Show newest version
/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */

package com.vividsolutions.jts.triangulate;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import com.vividsolutions.jts.algorithm.ConvexHull;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Envelope;
import com.vividsolutions.jts.geom.Geometry;
import com.vividsolutions.jts.geom.GeometryFactory;
import com.vividsolutions.jts.util.Debug;
import com.vividsolutions.jts.index.kdtree.KdNode;
import com.vividsolutions.jts.index.kdtree.KdTree;
import com.vividsolutions.jts.triangulate.quadedge.LastFoundQuadEdgeLocator;
import com.vividsolutions.jts.triangulate.quadedge.QuadEdgeSubdivision;
import com.vividsolutions.jts.triangulate.quadedge.Vertex;

/**
 * Computes a Conforming Delaunay Triangulation over a set of sites and a set of
 * linear constraints.
 * 

* A conforming Delaunay triangulation is a true Delaunay triangulation. In it * each constraint segment is present as a union of one or more triangulation * edges. Constraint segments may be subdivided into two or more triangulation * edges by the insertion of additional sites. The additional sites are called * Steiner points, and are necessary to allow the segments to be faithfully * reflected in the triangulation while maintaining the Delaunay property. * Another way of stating this is that in a conforming Delaunay triangulation * every constraint segment will be the union of a subset of the triangulation * edges (up to tolerance). *

* A Conforming Delaunay triangulation is distinct from a Constrained Delaunay triangulation. * A Constrained Delaunay triangulation is not necessarily fully Delaunay, * and it contains the constraint segments exactly as edges of the triangulation. *

* A typical usage pattern for the triangulator is: *

 * 	 ConformingDelaunayTriangulator cdt = new ConformingDelaunayTriangulator(sites, tolerance);
 * 
 *   // optional	
 *   cdt.setSplitPointFinder(splitPointFinder);
 *   cdt.setVertexFactory(vertexFactory);
 *   
 *	 cdt.setConstraints(segments, new ArrayList(vertexMap.values()));
 *	 cdt.formInitialDelaunay();
 *	 cdt.enforceConstraints();
 *	 subdiv = cdt.getSubdivision();
 * 
* * @author David Skea * @author Martin Davis */ public class ConformingDelaunayTriangulator { private static Envelope computeVertexEnvelope(Collection vertices) { Envelope env = new Envelope(); for (Iterator i = vertices.iterator(); i.hasNext();) { Vertex v = (Vertex) i.next(); env.expandToInclude(v.getCoordinate()); } return env; } private List initialVertices; // List private List segVertices; // List // MD - using a Set doesn't seem to be much faster // private Set segments = new HashSet(); private List segments = new ArrayList(); // List private QuadEdgeSubdivision subdiv = null; private IncrementalDelaunayTriangulator incDel; private Geometry convexHull; private ConstraintSplitPointFinder splitFinder = new NonEncroachingSplitPointFinder(); private KdTree kdt = null; private ConstraintVertexFactory vertexFactory = null; // allPointsEnv expanded by a small buffer private Envelope computeAreaEnv; // records the last split point computed, for error reporting private Coordinate splitPt = null; private double tolerance; // defines if two sites are the same. /** * Creates a Conforming Delaunay Triangulation based on the given * unconstrained initial vertices. The initial vertex set should not contain * any vertices which appear in the constraint set. * * @param initialVertices * a collection of {@link ConstraintVertex} * @param tolerance * the distance tolerance below which points are considered identical */ public ConformingDelaunayTriangulator(Collection initialVertices, double tolerance) { this.initialVertices = new ArrayList(initialVertices); this.tolerance = tolerance; kdt = new KdTree(tolerance); } /** * Sets the constraints to be conformed to by the computed triangulation. * The constraints must not contain duplicate segments (up to orientation). * The unique set of vertices (as {@link ConstraintVertex}es) * forming the constraints must also be supplied. * Supplying it explicitly allows the ConstraintVertexes to be initialized * appropriately(e.g. with external data), and avoids re-computing the unique set * if it is already available. * * @param segments a list of the constraint {@link Segment}s * @param segVertices the set of unique {@link ConstraintVertex}es referenced by the segments */ public void setConstraints(List segments, List segVertices) { this.segments = segments; this.segVertices = segVertices; } /** * Sets the {@link ConstraintSplitPointFinder} to be * used during constraint enforcement. * Different splitting strategies may be appropriate * for special situations. * * @param splitFinder the ConstraintSplitPointFinder to be used */ public void setSplitPointFinder(ConstraintSplitPointFinder splitFinder) { this.splitFinder = splitFinder; } /** * Gets the tolerance value used to construct the triangulation. * * @return a tolerance value */ public double getTolerance() { return tolerance; } /** * Gets the ConstraintVertexFactory used to create new constraint vertices at split points. * * @return a new constraint vertex */ public ConstraintVertexFactory getVertexFactory() { return vertexFactory; } /** * Sets a custom {@link ConstraintVertexFactory} to be used * to allow vertices carrying extra information to be created. * * @param vertexFactory the ConstraintVertexFactory to be used */ public void setVertexFactory(ConstraintVertexFactory vertexFactory) { this.vertexFactory = vertexFactory; } /** * Gets the {@link QuadEdgeSubdivision} which represents the triangulation. * * @return a subdivision */ public QuadEdgeSubdivision getSubdivision() { return subdiv; } /** * Gets the {@link KdTree} which contains the vertices of the triangulation. * * @return a KdTree */ public KdTree getKDT() { return kdt; } /** * Gets the sites (vertices) used to initialize the triangulation. * * @return a List of Vertex */ public List getInitialVertices() { return initialVertices; } /** * Gets the {@link Segment}s which represent the constraints. * * @return a collection of Segments */ public Collection getConstraintSegments() { return segments; } /** * Gets the convex hull of all the sites in the triangulation, * including constraint vertices. * Only valid after the constraints have been enforced. * * @return the convex hull of the sites */ public Geometry getConvexHull() { return convexHull; } // ================================================================== private void computeBoundingBox() { Envelope vertexEnv = computeVertexEnvelope(initialVertices); Envelope segEnv = computeVertexEnvelope(segVertices); Envelope allPointsEnv = new Envelope(vertexEnv); allPointsEnv.expandToInclude(segEnv); double deltaX = allPointsEnv.getWidth() * 0.2; double deltaY = allPointsEnv.getHeight() * 0.2; double delta = Math.max(deltaX, deltaY); computeAreaEnv = new Envelope(allPointsEnv); computeAreaEnv.expandBy(delta); } private void computeConvexHull() { GeometryFactory fact = new GeometryFactory(); Coordinate[] coords = getPointArray(); ConvexHull hull = new ConvexHull(coords, fact); convexHull = hull.getConvexHull(); } // /** // * Adds the segments in the Convex Hull of all sites in the input data as // linear constraints. // * This is required if TIN Refinement is performed. The hull segments are // flagged with a // unique // * data object to allow distinguishing them. // * // * @param convexHullSegmentData the data object to attach to each convex // hull segment // */ // private void addConvexHullToConstraints(Object convexHullSegmentData) { // Coordinate[] coords = convexHull.getCoordinates(); // for (int i = 1; i < coords.length; i++) { // Segment s = new Segment(coords[i - 1], coords[i], convexHullSegmentData); // addConstraintIfUnique(s); // } // } // private void addConstraintIfUnique(Segment r) { // boolean exists = false; // Iterator it = segments.iterator(); // Segment s = null; // while (it.hasNext()) { // s = (Segment) it.next(); // if (r.equalsTopo(s)) { // exists = true; // } // } // if (!exists) { // segments.add((Object) r); // } // } private Coordinate[] getPointArray() { Coordinate[] pts = new Coordinate[initialVertices.size() + segVertices.size()]; int index = 0; for (Iterator i = initialVertices.iterator(); i.hasNext();) { Vertex v = (Vertex) i.next(); pts[index++] = v.getCoordinate(); } for (Iterator i2 = segVertices.iterator(); i2.hasNext();) { Vertex v = (Vertex) i2.next(); pts[index++] = v.getCoordinate(); } return pts; } private ConstraintVertex createVertex(Coordinate p) { ConstraintVertex v = null; if (vertexFactory != null) v = vertexFactory.createVertex(p, null); else v = new ConstraintVertex(p); return v; } /** * Creates a vertex on a constraint segment * * @param p the location of the vertex to create * @param seg the constraint segment it lies on * @return the new constraint vertex */ private ConstraintVertex createVertex(Coordinate p, Segment seg) { ConstraintVertex v = null; if (vertexFactory != null) v = vertexFactory.createVertex(p, seg); else v = new ConstraintVertex(p); v.setOnConstraint(true); return v; } /** * Inserts all sites in a collection * * @param vertices a collection of ConstraintVertex */ private void insertSites(Collection vertices) { Debug.println("Adding sites: " + vertices.size()); for (Iterator i = vertices.iterator(); i.hasNext();) { ConstraintVertex v = (ConstraintVertex) i.next(); insertSite(v); } } private ConstraintVertex insertSite(ConstraintVertex v) { KdNode kdnode = kdt.insert(v.getCoordinate(), v); if (!kdnode.isRepeated()) { incDel.insertSite(v); } else { ConstraintVertex snappedV = (ConstraintVertex) kdnode.getData(); snappedV.merge(v); return snappedV; // testing // if ( v.isOnConstraint() && ! currV.isOnConstraint()) { // System.out.println(v); // } } return v; } /** * Inserts a site into the triangulation, maintaining the conformal Delaunay property. * This can be used to further refine the triangulation if required * (e.g. to approximate the medial axis of the constraints, * or to improve the grading of the triangulation). * * @param p the location of the site to insert */ public void insertSite(Coordinate p) { insertSite(createVertex(p)); } // ================================================================== /** * Computes the Delaunay triangulation of the initial sites. */ public void formInitialDelaunay() { computeBoundingBox(); subdiv = new QuadEdgeSubdivision(computeAreaEnv, tolerance); subdiv.setLocator(new LastFoundQuadEdgeLocator(subdiv)); incDel = new IncrementalDelaunayTriangulator(subdiv); insertSites(initialVertices); } // ================================================================== private final static int MAX_SPLIT_ITER = 99; /** * Enforces the supplied constraints into the triangulation. * * @throws ConstraintEnforcementException * if the constraints cannot be enforced */ public void enforceConstraints() { addConstraintVertices(); // if (true) return; int count = 0; int splits = 0; do { splits = enforceGabriel(segments); count++; Debug.println("Iter: " + count + " Splits: " + splits + " Current # segments = " + segments.size()); } while (splits > 0 && count < MAX_SPLIT_ITER); if (count == MAX_SPLIT_ITER) { Debug.println("ABORTED! Too many iterations while enforcing constraints"); if (!Debug.isDebugging()) throw new ConstraintEnforcementException( "Too many splitting iterations while enforcing constraints. Last split point was at: ", splitPt); } } private void addConstraintVertices() { computeConvexHull(); // insert constraint vertices as sites insertSites(segVertices); } /* * private List findMissingConstraints() { List missingSegs = new ArrayList(); * for (int i = 0; i < segments.size(); i++) { Segment s = (Segment) * segments.get(i); QuadEdge q = subdiv.locate(s.getStart(), s.getEnd()); if * (q == null) missingSegs.add(s); } return missingSegs; } */ private int enforceGabriel(Collection segsToInsert) { List newSegments = new ArrayList(); int splits = 0; List segsToRemove = new ArrayList(); /** * On each iteration must always scan all constraint (sub)segments, since * some constraints may be rebroken by Delaunay triangle flipping caused by * insertion of another constraint. However, this process must converge * eventually, with no splits remaining to find. */ for (Iterator i = segsToInsert.iterator(); i.hasNext();) { Segment seg = (Segment) i.next(); // System.out.println(seg); Coordinate encroachPt = findNonGabrielPoint(seg); // no encroachment found - segment must already be in subdivision if (encroachPt == null) continue; // compute split point splitPt = splitFinder.findSplitPoint(seg, encroachPt); ConstraintVertex splitVertex = createVertex(splitPt, seg); // DebugFeature.addLineSegment(DEBUG_SEG_SPLIT, encroachPt, splitPt, ""); // Debug.println(WKTWriter.toLineString(encroachPt, splitPt)); /** * Check whether the inserted point still equals the split pt. This will * not be the case if the split pt was too close to an existing site. If * the point was snapped, the triangulation will not respect the inserted * constraint - this is a failure. This can be caused by: *
    *
  • An initial site that lies very close to a constraint segment The * cure for this is to remove any initial sites which are close to * constraint segments in a preprocessing phase. *
  • A narrow constraint angle which causing repeated splitting until * the split segments are too small. The cure for this is to either choose * better split points or "guard" narrow angles by cracking the segments * equidistant from the corner. *
*/ ConstraintVertex insertedVertex = insertSite(splitVertex); if (!insertedVertex.getCoordinate().equals2D(splitPt)) { Debug.println("Split pt snapped to: " + insertedVertex); // throw new ConstraintEnforcementException("Split point snapped to // existing point // (tolerance too large or constraint interior narrow angle?)", // splitPt); } // split segment and record the new halves Segment s1 = new Segment(seg.getStartX(), seg.getStartY(), seg .getStartZ(), splitVertex.getX(), splitVertex.getY(), splitVertex .getZ(), seg.getData()); Segment s2 = new Segment(splitVertex.getX(), splitVertex.getY(), splitVertex.getZ(), seg.getEndX(), seg.getEndY(), seg.getEndZ(), seg .getData()); newSegments.add(s1); newSegments.add(s2); segsToRemove.add(seg); splits = splits + 1; } segsToInsert.removeAll(segsToRemove); segsToInsert.addAll(newSegments); return splits; } // public static final String DEBUG_SEG_SPLIT = "C:\\proj\\CWB\\test\\segSplit.jml"; /** * Given a set of points stored in the kd-tree and a line segment defined by * two points in this set, finds a {@link Coordinate} in the circumcircle of * the line segment, if one exists. This is called the Gabriel point - if none * exists then the segment is said to have the Gabriel condition. Uses the * heuristic of finding the non-Gabriel point closest to the midpoint of the * segment. * * @param p * start of the line segment * @param q * end of the line segment * @return a point which is non-Gabriel * or null if no point is non-Gabriel */ private Coordinate findNonGabrielPoint(Segment seg) { Coordinate p = seg.getStart(); Coordinate q = seg.getEnd(); // Find the mid point on the line and compute the radius of enclosing circle Coordinate midPt = new Coordinate((p.x + q.x) / 2.0, (p.y + q.y) / 2.0); double segRadius = p.distance(midPt); // compute envelope of circumcircle Envelope env = new Envelope(midPt); env.expandBy(segRadius); // Find all points in envelope List result = kdt.query(env); // For each point found, test if it falls strictly in the circle // find closest point Coordinate closestNonGabriel = null; double minDist = Double.MAX_VALUE; for (Iterator i = result.iterator(); i.hasNext();) { KdNode nextNode = (KdNode) i.next(); Coordinate testPt = nextNode.getCoordinate(); // ignore segment endpoints if (testPt.equals2D(p) || testPt.equals2D(q)) continue; double testRadius = midPt.distance(testPt); if (testRadius < segRadius) { // double testDist = seg.distance(testPt); double testDist = testRadius; if (closestNonGabriel == null || testDist < minDist) { closestNonGabriel = testPt; minDist = testDist; } } } return closestNonGabriel; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy