All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.datasyslab.geosparksql.utils.Adapter.scala Maven / Gradle / Ivy

There is a newer version: 1.0.1
Show newest version
/**
  * FILE: Adapter
  * PATH: org.datasyslab.geosparksql.utils.Adapter
  * Copyright (c) GeoSpark Development Team
  *
  * MIT License
  *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
  * in the Software without restriction, including without limitation the rights
  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  * copies of the Software, and to permit persons to whom the Software is
  * furnished to do so, subject to the following conditions:
  *
  * The above copyright notice and this permission notice shall be included in all
  * copies or substantial portions of the Software.
  *
  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
package org.datasyslab.geosparksql.utils


import com.vividsolutions.jts.geom.Geometry
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.geosparksql.GeometryWrapper
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.datasyslab.geospark.spatialRDD.SpatialRDD

object Adapter {

  def toJavaRdd(dataFrame: DataFrame): JavaRDD[Geometry] =
  {
    return toRdd(dataFrame).toJavaRDD()
  }

  def toRdd(dataFrame: DataFrame): RDD[Geometry] =
  {
    return dataFrame.rdd.map[Geometry](f => f.get(0).asInstanceOf[GeometryWrapper].getGeometry())
  }

  def toDf(spatialRDD: SpatialRDD[Geometry], sparkSession: SparkSession): DataFrame =
  {
    val rowRdd = spatialRDD.rawSpatialRDD.rdd.map[Row](f => Row.fromSeq(f.toString.split("\t").toSeq))
    var fieldArray = new Array[StructField](rowRdd.take(1)(0).size)
    fieldArray(0) = StructField("rddshape", StringType)
    for (i <- 1 to fieldArray.length-1) fieldArray(i) = StructField("_c"+i, StringType)
    val schema = StructType(fieldArray)
    return sparkSession.createDataFrame(rowRdd, schema)
  }

  /*
   * Since UserDefinedType is hidden from users. We cannot directly return spatialRDD to spatialDf.
   * Let's wait for Spark side's change
   */
  /*
  def toSpatialDf(spatialRDD: SpatialRDD[Geometry], sparkSession: SparkSession): DataFrame =
  {
    val rowRdd = spatialRDD.rawSpatialRDD.rdd.map[Row](f =>
      {
        var seq = Seq(new GeometryWrapper(f))
        var otherFields = f.getUserData.asInstanceOf[String].split("\t").toSeq
        seq :+ otherFields
        Row.fromSeq(seq)
      }
      )
    var fieldArray = new Array[StructField](rowRdd.take(1)(0).size)
    fieldArray(0) = StructField("rddshape", ArrayType(ByteType, false))
    for (i <- 1 to fieldArray.length-1) fieldArray(i) = StructField("_c"+i, StringType)
    val schema = StructType(fieldArray)
    return sparkSession.createDataFrame(rowRdd, schema)
  }
  */
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy