All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.datavec.dataframe.api.FloatColumn Maven / Gradle / Ivy

Go to download

High-performance Java Dataframe with integrated columnar storage (fork of tablesaw)

There is a newer version: 0.9.1
Show newest version
package org.datavec.dataframe.api;

import com.google.common.base.Preconditions;
import com.google.common.base.Strings;
import it.unimi.dsi.fastutil.floats.*;
import it.unimi.dsi.fastutil.ints.IntComparator;
import org.datavec.dataframe.columns.AbstractColumn;
import org.datavec.dataframe.columns.Column;
import org.datavec.dataframe.filtering.FloatBiPredicate;
import org.datavec.dataframe.filtering.FloatPredicate;
import org.datavec.dataframe.io.TypeUtils;
import org.datavec.dataframe.reducing.NumericReduceUtils;
import org.datavec.dataframe.store.ColumnMetadata;
import org.datavec.dataframe.util.BitmapBackedSelection;
import org.datavec.dataframe.util.Selection;
import org.datavec.dataframe.util.Stats;

import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import static org.datavec.dataframe.columns.FloatColumnUtils.*;
import static org.datavec.dataframe.reducing.NumericReduceUtils.*;

/**
 * A column in a base table that contains float values
 */
public class FloatColumn extends AbstractColumn implements FloatIterable, NumericColumn {

    public static final float MISSING_VALUE = (float) ColumnType.FLOAT.getMissingValue();
    private static final int BYTE_SIZE = 4;

    private static int DEFAULT_ARRAY_SIZE = 128;

    private FloatArrayList data;

    public FloatColumn(String name) {
        super(name);
        data = new FloatArrayList(DEFAULT_ARRAY_SIZE);
    }

    public FloatColumn(String name, int initialSize) {
        super(name);
        data = new FloatArrayList(initialSize);
    }

    public FloatColumn(ColumnMetadata metadata) {
        super(metadata);
        data = new FloatArrayList(metadata.getSize());
    }

    public int size() {
        return data.size();
    }

    @Override
    public Table summary() {
        return stats().asTable();
    }

    public Stats stats() {
        return Stats.create(this);
    }

    @Override
    public int countUnique() {
        FloatSet floats = new FloatOpenHashSet();
        for (int i = 0; i < size(); i++) {
            floats.add(data.getFloat(i));
        }
        return floats.size();
    }

    /**
     * Returns the largest ("top") n values in the column
     *
     * @param n The maximum number of records to return. The actual number will be smaller if n is greater than the
     *          number of observations in the column
     * @return A list, possibly empty, of the largest observations
     */
    public FloatArrayList top(int n) {
        FloatArrayList top = new FloatArrayList();
        float[] values = data.toFloatArray();
        FloatArrays.parallelQuickSort(values, reverseFloatComparator);
        for (int i = 0; i < n && i < values.length; i++) {
            top.add(values[i]);
        }
        return top;
    }

    /**
     * Returns the smallest ("bottom") n values in the column
     *
     * @param n The maximum number of records to return. The actual number will be smaller if n is greater than the
     *          number of observations in the column
     * @return A list, possibly empty, of the smallest n observations
     */
    public FloatArrayList bottom(int n) {
        FloatArrayList bottom = new FloatArrayList();
        float[] values = data.toFloatArray();
        FloatArrays.parallelQuickSort(values);
        for (int i = 0; i < n && i < values.length; i++) {
            bottom.add(values[i]);
        }
        return bottom;
    }

    @Override
    public FloatColumn unique() {
        FloatSet floats = new FloatOpenHashSet();
        for (int i = 0; i < size(); i++) {
            floats.add(data.getFloat(i));
        }
        FloatColumn column = new FloatColumn(name() + " Unique values", floats.size());
        floats.forEach(column::add);
        return column;
    }

    public FloatArrayList data() {
        return data;
    }

    @Override
    public ColumnType type() {
        return ColumnType.FLOAT;
    }

    public float firstElement() {
        if (size() > 0) {
            return data.getFloat(0);
        }
        return MISSING_VALUE;
    }

    // Reduce functions applied to the whole column
    public double sum() {
        return sum.reduce(this);
    }

    public double product() {
        return product.reduce(this);
    }

    public double mean() {
        return mean.reduce(this);
    }

    public double median() {
        return median.reduce(this);
    }

    public double quartile1() {
        return quartile1.reduce(this);
    }

    public double quartile3() {
        return quartile3.reduce(this);
    }

    public double percentile(double percentile) {
        return NumericReduceUtils.percentile(this.toDoubleArray(), percentile);
    }

    public double range() {
        return range.reduce(this);
    }

    public double max() {
        return max.reduce(this);
    }

    public double min() {
        return min.reduce(this);
    }

    public double variance() {
        return variance.reduce(this);
    }

    public double populationVariance() {
        return populationVariance.reduce(this);
    }

    public double standardDeviation() {
        return stdDev.reduce(this);
    }

    public double sumOfLogs() {
        return sumOfLogs.reduce(this);
    }

    public double sumOfSquares() {
        return sumOfSquares.reduce(this);
    }

    public double geometricMean() {
        return geometricMean.reduce(this);
    }

    /**
     * Returns the quadraticMean, aka the root-mean-square, for all values in this column
     */
    public double quadraticMean() {
        return quadraticMean.reduce(this);
    }

    public double kurtosis() {
        return kurtosis.reduce(this);
    }

    public double skewness() {
        return skewness.reduce(this);
    }

    /**
     * Adds the given float to this column
     */
    public void add(float f) {
        data.add(f);
    }

    /**
     * Adds the given double to this column, after casting it to a float
     */
    public void add(double d) {
        data.add((float) d);
    }

    // Predicate  functions

    public Selection isLessThan(float f) {
        return select(isLessThan, f);
    }

    public Selection isMissing() {
        return select(isMissing);
    }

    public Selection isNotMissing() {
        return select(isNotMissing);
    }

    public Selection isGreaterThan(float f) {
        return select(isGreaterThan, f);
    }

    public Selection isGreaterThanOrEqualTo(float f) {
        return select(isGreaterThanOrEqualTo, f);
    }

    public Selection isLessThanOrEqualTo(float f) {
        return select(isLessThanOrEqualTo, f);
    }

    public Selection isNotEqualTo(float f) {
        return select(notIsEqualTo, f);
    }


    public Selection isEqualTo(float f) {
        return select(isEqualTo, f);
    }

    public Selection isEqualTo(FloatColumn f) {
        Selection results = new BitmapBackedSelection();
        int i = 0;
        FloatIterator floatIterator = f.iterator();
        for (float floats : data) {
            if (floats == floatIterator.nextFloat()) {
                results.add(i);
            }
            i++;
        }
        return results;
    }

    @Override
    public String getString(int row) {
        return String.valueOf(data.getFloat(row));
    }

    @Override
    public FloatColumn emptyCopy() {
        FloatColumn column = new FloatColumn(name());
        column.setComment(comment());
        return column;
    }

    @Override
    public FloatColumn emptyCopy(int rowSize) {
        FloatColumn column = new FloatColumn(name(), rowSize);
        column.setComment(comment());
        return column;
    }

    @Override
    public void clear() {
        data = new FloatArrayList(DEFAULT_ARRAY_SIZE);
    }

    @Override
    public FloatColumn copy() {
        FloatColumn column = FloatColumn.create(name(), data);
        column.setComment(comment());
        return column;
    }

    @Override
    public void sortAscending() {
        Arrays.parallelSort(data.elements());
    }

    @Override
    public void sortDescending() {
        FloatArrays.parallelQuickSort(data.elements(), reverseFloatComparator);
    }

    @Override
    public boolean isEmpty() {
        return data.isEmpty();
    }

    public static FloatColumn create(String name) {
        return new FloatColumn(name);
    }

    public static FloatColumn create(String name, int initialSize) {
        return new FloatColumn(name, initialSize);
    }

    public static FloatColumn create(String name, FloatArrayList floats) {
        FloatColumn column = new FloatColumn(name, floats.size());
        column.data = new FloatArrayList(floats.size());
        column.data.addAll(floats);
        return column;
    }

    /**
     * Compares two floats, such that a sort based on this comparator would sort in descending order
     */
    FloatComparator reverseFloatComparator = new FloatComparator() {

        @Override
        public int compare(Float o2, Float o1) {
            return (o1 < o2 ? -1 : (o1.equals(o2) ? 0 : 1));
        }

        @Override
        public int compare(float o2, float o1) {
            return (o1 < o2 ? -1 : (o1 == o2 ? 0 : 1));
        }
    };

    /**
     * Returns the count of missing values in this column
     *
     * Implementation note: We use NaN for missing, so we can't compare against the MISSING_VALUE and use val != val instead
     */
    @Override
    public int countMissing() {
        int count = 0;
        for (int i = 0; i < size(); i++) {
            float f = get(i);
            if (f != f) {
                count++;
            }
        }
        return count;
    }

    @Override
    public void addCell(String object) {
        try {
            add(convert(object));
        } catch (NumberFormatException nfe) {
            throw new NumberFormatException(name() + ": " + nfe.getMessage());
        } catch (NullPointerException e) {
            throw new RuntimeException(name() + ": " + String.valueOf(object) + ": " + e.getMessage());
        }
    }

    /**
     * Returns a float that is parsed from the given String
     * 

* We remove any commas before parsing */ public static float convert(String stringValue) { if (Strings.isNullOrEmpty(stringValue) || TypeUtils.MISSING_INDICATORS.contains(stringValue)) { return MISSING_VALUE; } Matcher matcher = COMMA_PATTERN.matcher(stringValue); return Float.parseFloat(matcher.replaceAll("")); } /** * Returns the natural log of the values in this column as a new FloatColumn */ public FloatColumn logN() { FloatColumn newColumn = FloatColumn.create(name() + "[logN]", size()); for (float value : this) { newColumn.add((float) Math.log(value)); } return newColumn; } public FloatColumn log10() { FloatColumn newColumn = FloatColumn.create(name() + "[log10]", size()); for (float value : this) { newColumn.add((float) Math.log10(value)); } return newColumn; } /** * Returns the natural log of the values in this column, after adding 1 to each so that zero * values don't return -Infinity */ public FloatColumn log1p() { FloatColumn newColumn = FloatColumn.create(name() + "[1og1p]", size()); for (float value : this) { newColumn.add((float) Math.log1p(value)); } return newColumn; } public FloatColumn round() { FloatColumn newColumn = FloatColumn.create(name() + "[rounded]", size()); for (float value : this) { newColumn.add(Math.round(value)); } return newColumn; } public FloatColumn abs() { FloatColumn newColumn = FloatColumn.create(name() + "[abs]", size()); for (float value : this) { newColumn.add(Math.abs(value)); } return newColumn; } public FloatColumn square() { FloatColumn newColumn = FloatColumn.create(name() + "[sq]", size()); for (float value : this) { newColumn.add(value * value); } return newColumn; } public FloatColumn sqrt() { FloatColumn newColumn = FloatColumn.create(name() + "[sqrt]", size()); for (float value : this) { newColumn.add((float) Math.sqrt(value)); } return newColumn; } public FloatColumn cubeRoot() { FloatColumn newColumn = FloatColumn.create(name() + "[cbrt]", size()); for (float value : this) { newColumn.add((float) Math.cbrt(value)); } return newColumn; } public FloatColumn cube() { FloatColumn newColumn = FloatColumn.create(name() + "[cb]", size()); for (float value : this) { newColumn.add(value * value * value); } return newColumn; } public FloatColumn remainder(FloatColumn column2) { FloatColumn result = FloatColumn.create(name() + " % " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) % column2.get(r)); } return result; } public FloatColumn add(FloatColumn column2) { FloatColumn result = FloatColumn.create(name() + " + " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) + column2.get(r)); } return result; } public FloatColumn subtract(FloatColumn column2) { FloatColumn result = FloatColumn.create(name() + " - " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) - column2.get(r)); } return result; } public FloatColumn multiply(FloatColumn column2) { FloatColumn result = FloatColumn.create(name() + " * " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) * column2.get(r)); } return result; } public FloatColumn multiply(IntColumn column2) { FloatColumn result = FloatColumn.create(name() + " * " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) * column2.get(r)); } return result; } public FloatColumn multiply(LongColumn column2) { FloatColumn result = FloatColumn.create(name() + " * " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) * column2.get(r)); } return result; } public FloatColumn multiply(ShortColumn column2) { FloatColumn result = FloatColumn.create(name() + " * " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) * column2.get(r)); } return result; } public FloatColumn divide(FloatColumn column2) { FloatColumn result = FloatColumn.create(name() + " / " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) / column2.get(r)); } return result; } public FloatColumn divide(IntColumn column2) { FloatColumn result = FloatColumn.create(name() + " / " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) / column2.get(r)); } return result; } public FloatColumn divide(LongColumn column2) { FloatColumn result = FloatColumn.create(name() + " / " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) / column2.get(r)); } return result; } public FloatColumn divide(ShortColumn column2) { FloatColumn result = FloatColumn.create(name() + " / " + column2.name(), size()); for (int r = 0; r < size(); r++) { result.add(get(r) / column2.get(r)); } return result; } /** * For each item in the column, returns the same number with the sign changed. * For example: * -1.3 returns 1.3, * 2.135 returns -2.135 * 0 returns 0 */ public FloatColumn neg() { FloatColumn newColumn = FloatColumn.create(name() + "[neg]", size()); for (float value : this) { newColumn.add(value * -1); } return newColumn; } private static final Pattern COMMA_PATTERN = Pattern.compile(","); /** * Compares the given ints, which refer to the indexes of the floats in this column, according to the values of the * floats themselves */ @Override public IntComparator rowComparator() { return comparator; } private final IntComparator comparator = new IntComparator() { @Override public int compare(Integer r1, Integer r2) { float f1 = data.getFloat(r1); float f2 = data.getFloat(r2); return Float.compare(f1, f2); } public int compare(int r1, int r2) { float f1 = data.getFloat(r1); float f2 = data.getFloat(r2); return Float.compare(f1, f2); } }; public float get(int index) { return data.getFloat(index); } @Override public float getFloat(int index) { return data.getFloat(index); } public void set(int r, float value) { data.set(r, value); } // TODO(lwhite): Reconsider the implementation of this functionality to allow user to provide a specific max error. // TODO(lwhite): continued: Also see section in Effective Java on floating point comparisons. Selection isCloseTo(float target) { Selection results = new BitmapBackedSelection(); int i = 0; for (float f : data) { if (Float.compare(f, target) == 0) { results.add(i); } i++; } return results; } Selection isCloseTo(double target) { Selection results = new BitmapBackedSelection(); int i = 0; for (float f : data) { if (Double.compare(f, 0.0) == 0) { results.add(i); } i++; } return results; } Selection isPositive() { return select(isPositive); } Selection isNegative() { return select(isNegative); } Selection isNonNegative() { return select(isNonNegative); } public double[] toDoubleArray() { double[] output = new double[data.size()]; for (int i = 0; i < data.size(); i++) { output[i] = data.getFloat(i); } return output; } public String print() { StringBuilder builder = new StringBuilder(); builder.append(title()); for (Float aData : data) { builder.append(String.valueOf(aData)); builder.append('\n'); } return builder.toString(); } @Override public String toString() { return "Float column: " + name(); } @Override public void append(Column column) { Preconditions.checkArgument(column.type() == this.type()); FloatColumn floatColumn = (FloatColumn) column; for (int i = 0; i < floatColumn.size(); i++) { add(floatColumn.get(i)); } } @Override public FloatIterator iterator() { return data.iterator(); } public Selection select(FloatPredicate predicate) { Selection bitmap = new BitmapBackedSelection(); for (int idx = 0; idx < data.size(); idx++) { float next = data.getFloat(idx); if (predicate.test(next)) { bitmap.add(idx); } } return bitmap; } public Selection select(FloatBiPredicate predicate, float value) { Selection bitmap = new BitmapBackedSelection(); for (int idx = 0; idx < data.size(); idx++) { float next = data.getFloat(idx); if (predicate.test(next, value)) { bitmap.add(idx); } } return bitmap; } FloatSet asSet() { return new FloatOpenHashSet(data); } public boolean contains(float value) { return data.contains(value); } @Override public int byteSize() { return BYTE_SIZE; } /** * Returns the contents of the cell at rowNumber as a byte[] */ @Override public byte[] asBytes(int rowNumber) { return ByteBuffer.allocate(4).putFloat(get(rowNumber)).array(); } @Override public FloatColumn difference() { FloatColumn returnValue = new FloatColumn(this.name(), this.size()); returnValue.add(FloatColumn.MISSING_VALUE); for (int current = 0; current < this.size(); current++) { if (current + 1 < this.size()) { /* * check for missing values: * note that for floats you test val != val, * since a missing float is encoded as Float.NaN and nothing is equal to NaN. */ float currentValue = get(current); float nextValue = get(current + 1); if (currentValue != currentValue || nextValue != nextValue) { returnValue.add(Float.NaN); } else { returnValue.add(nextValue - currentValue); } } } return returnValue; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy