org.ddogleg.nn.wrap.KdForestBbfSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ddogleg Show documentation
Show all versions of ddogleg Show documentation
DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.
/*
* Copyright (c) 2012-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of DDogleg (http://ddogleg.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ddogleg.nn.wrap;
import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.nn.NnData;
import org.ddogleg.nn.alg.*;
import org.ddogleg.struct.FastQueue;
import java.util.List;
/**
* K-D tree search which searches through multiple trees. The search is performed using a Best-Bin-First approach
*
* @author Peter Abeles
*/
public class KdForestBbfSearch implements NearestNeighbor {
// set of K-D trees which are to be searched
KdTree[]forest;
// creates the set of K-D trees given the same input
KdTreeConstructor constructor;
KdTreeSearch1Bbf search1;
KdTreeSearchNBbf searchN;
AxisSplitter splitter;
KdTreeMemory memory = new KdTreeMemory();
// storage for multiple results
FastQueue found = new FastQueue(KdTreeResult.class,true);
public KdForestBbfSearch(int numberOfTrees,
int maxNodesSearched,
AxisSplitter splitter) {
this.forest = new KdTree[ numberOfTrees ];
this.splitter = splitter;
this.search1 = new KdTreeSearch1Bbf(maxNodesSearched);
this.searchN = new KdTreeSearchNBbf(maxNodesSearched);
}
@Override
public void init(int pointDimension) {
constructor = new KdTreeConstructor(memory,pointDimension,splitter);
}
@Override
public void setPoints(List points, List data) {
if( forest[0] != null ) {
for( int i = 0; i < forest.length; i++ )
memory.recycleGraph(forest[i]);
}
for( int i = 0; i < forest.length; i++ )
forest[i] = constructor.construct(points,data);
search1.setTrees(forest);
searchN.setTrees(forest);
}
@Override
public boolean findNearest(double[] point, double maxDistance, NnData result) {
if( maxDistance < 0 )
search1.setMaxDistance(Double.MAX_VALUE);
else
search1.setMaxDistance(maxDistance);
KdTree.Node found = search1.findNeighbor(point);
if( found == null )
return false;
result.point = found.point;
result.data = (D)found.data;
result.distance = search1.getDistance();
return true;
}
@Override
public void findNearest(double[] point, double maxDistance, int numNeighbors, FastQueue> results) {
results.reset();
if( maxDistance <= 0 )
searchN.setMaxDistance(Double.MAX_VALUE);
else
searchN.setMaxDistance(maxDistance);
found.reset();
searchN.findNeighbor(point, numNeighbors, found);
for( int i = 0; i < found.size; i++ ) {
KdTreeResult k = found.get(i);
NnData r = results.grow();
r.point = k.node.point;
r.data = (D)k.node.data;
r.distance = k.distance;
}
}
}