All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ddogleg.optimization.impl.NumericalGradientFB Maven / Gradle / Ivy

Go to download

DDogleg Numerics is a high performance Java library for non-linear optimization, robust model fitting, polynomial root finding, sorting, and more.

There is a newer version: 0.23.4
Show newest version
/*
 * Copyright (c) 2012-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of DDogleg (http://ddogleg.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ddogleg.optimization.impl;

import org.ddogleg.optimization.functions.FunctionNtoN;
import org.ddogleg.optimization.functions.FunctionNtoS;
import org.ejml.UtilEjml;

/**
 * Finite difference numerical gradient calculation using the forward+backwards equation.
 * Difference equation, f'(x) = (f(x+h)-f(x-h))/(2*h).  Scaling is taken in account by h based
 * upon the magnitude of the elements in variable x.
 *
 * 

* NOTE: If multiple input parameters are modified by the function when a single one is changed numerical * derivatives aren't reliable. *

* * @author Peter Abeles */ public class NumericalGradientFB implements FunctionNtoN { // number of input variables private final int N; // function being differentiated private FunctionNtoS function; // scaling of the difference parameter private double differenceScale; public NumericalGradientFB(FunctionNtoS function, double differenceScale) { this.function = function; this.differenceScale = differenceScale; this.N = function.getNumOfInputsN(); } public NumericalGradientFB(FunctionNtoS function) { this(function,Math.sqrt(UtilEjml.EPS)); } @Override public int getN() { return N; } @Override public void process(double[] input, double[] output) { double temp; for( int i = 0; i < N; i++ ) { double x = input[i]; double h = x != 0 ? differenceScale*Math.abs(x) : differenceScale; // backwards input[i] = temp = x-h; double h0 = x-temp; double backwards = function.process(input); // forward input[i] = temp = x+h; double h1 = temp-x; double forward = function.process(input); output[i] = (forward - backwards)/(h0+h1); input[i] = x; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy